(ONE IDENTITY

One Identity Safeguard for Privileged
Sessions 6.0

Creating custom Credential Store
plugins

Copyright 2019 One Identity LLC.

ALL RIGHTS RESERVED.

This guide contains proprietary information protected by copyright. The software described in this guide
is furnished under a software license or nondisclosure agreement. This software may be used or copied
only in accordance with the terms of the applicable agreement. No part of this guide may be reproduced
or transmitted in any form or by any means, electronic or mechanical, including photocopying and
recording for any purpose other than the purchaser’s personal use without the written permission of
One Identity LLC.

The information in this document is provided in connection with One Identity products. No license,
express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of One Identity LLC products. EXCEPT AS SET FORTH IN THE
TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE AGREEMENT FOR THIS PRODUCT,

ONE IDENTITY ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR
STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. IN NO EVENT SHALL ONE IDENTITY BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF

ONE IDENTITY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. One Identity makes no
representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and product descriptions at any
time without notice. One Identity does not make any commitment to update the information
contained in this document.

If you have any questions regarding your potential use of this material, contact:

One Identity LLC.
Attn: LEGAL Dept

4 Polaris Way

Aliso Viejo, CA 92656

Refer to our Web site (http://www.Oneldentity.com) for regional and international office information.
Patents

One Identity is proud of our advanced technology. Patents and pending patents may apply to this
product. For the most current information about applicable patents for this product, please visit our
website at http://www.Oneldentity.com/legal/patents.aspx.

Trademarks

One Identity and the One Identity logo are trademarks and registered trademarks of One Identity
LLC. in the U.S.A. and other countries. For a complete list of One Identity trademarks, please visit
our website at www.Oneldentity.com/legal. All other trademarks are the property of their
respective owners.

Legend

€ | WARNING: A WARNING icon highlights a potential risk of bodily injury or property
damage, for which industry-standard safety precautions are advised. This icon is
often associated with electrical hazards related to hardware.

CAUTION: A CAUTION icon indicates potential damage to hardware or loss of data if
instructions are not followed.

SPS Creating custom Credential Store plugins
Updated - December 2019
Version - 6.0

http://www.oneidentity.com/
http://www.oneidentity.com/legal/patents.aspx
http://www.oneidentity.com/legal

Contents

INtrodUucChion 4
Plugin packaging 5
Including additional modules 5
The MANIFEST fil@ . 6
AP VerSiONING il 7
The available Python environments 8
The main.py Module ... 9
get_passWord LISt il 10
INpUt argUmMENts . 10
RetUrNed ValUes 12
get private_Key ISt . 12
INpUt argUmMENnts . 13
RetUrNEd ValUes 14
authentication_completed ... 15
INpUt argumMENnts . 16
Returned Values ... L 16
SESSION_eNAed . L 17
INpUt argUmMENts . 17
Returned Values ... L 18
session_ended eXamPle ..o o 18
Plugin modification examples 18
The sample configuration file (default.cfg) 22
Plugin troubleshooting 23
BB OUL US 24
CoNtaCtiNg US . 24
Technical sUPpPOrt Fr@SOUICES 24

SPS 6.0 Creating custom Credential Store plugins

(ONE IDENTITY

Introduction

The following sections provide an overview on creating custom Credential Store plugins
that can be used to authenticate on the target servers using an external Credential Store
server (for example, a password manager or SSH private key store). For details on using
an existing plugin, see "Integrating external authentication and authorization systems" in
the Administration Guide.

A | CAUTION:

Using custom plugins in SPS is recommended only if you are familiar with
both Python and SPS. Product support applies only to SPS: that is, until the
entry point of the Python code and passing the specified arguments to the
Python code. One Identity is not responsible for the quality, resource
requirements, or any bugs in the Python code, nor any crashes, service
outages, or any other damage caused by the improper use of this feature,
unless explicitly stated in a contract with One Identity. If you want to
create a custom plugin, contact our Support Team for details and
instructions.

The Credential Store plugin is a Python module.One Identity Safeguard for Privileged
Sessions (SPS) invokes the module to request the password or the SSH private key of the
target user. The plugin processes the request, returns the result to SPS, and exits. SPS
then processes the result.

The backup and restore functionality of SPS handles the uploaded Credential Store plugin
as part of SPS's configuration. You do not need to create separate backups of your
Credential Store plugin.

SPS 6.0 Creating custom Credential Store plugins

(ONE IDENTITY

Introduction

https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.3/administration-guide/advanced-authentication-and-authorization-techniques/integrating-external-authentication-and-authorization-systems/
https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.3/administration-guide/advanced-authentication-and-authorization-techniques/integrating-external-authentication-and-authorization-systems/
https://support.oneidentity.com/one-identity-safeguard-for-privileged-sessions

Plugin packaging

An SPS pluginis a .zip file that contains a MANIFEST file (with no extension) and a Python
module named main.py in its root directory. The plugin .zip file may also contain an
optional default.cfg file that serves to provide an example configuration, which you can
use as a basis for customization if you wish to adapt the plugin to your site's needs. The
size of the .zip file is limited to 20 megabytes.

Including additional modules

You can invoke additional Python modules from main.py, provided that the total size of
the .zip bundle does not exceed 20 megabytes and all calls are executed within the
plugin timeout.

The modules must be compatible with the selected Python environment. For more
information, see the available Python environments.

@NE IDENTITY" SPS 6.0 Creating custom Credential Store plugins
Plugin packaging

The MANIFEST file

The MANIFEST file is a YAML file and should conform to version 1.2 of the YAML specification.

It must contain the following information about the plugin:

« name: The identifier of the plugin during the upload to SPS. The initial character must
be an alphabetical character, while the rest may be alphabetical characters,
numerals or '_'. While case sensitivity is supported, special characters (for example,
'@' or '&") are not permitted.

description: The description of the plugin. This description is displayed on the SPS
web interface.

version: The version number of the plugin. It must begin with a numeral (for
example, 2.0.3).

type: The type of the plugin. It must be credentialstore for a Credential Store plugin
and aa for an Authentication and Authorization plugin.

o api: The version number of the required SPS API. The current version number is 1.1.

It may contain the following elements:

o entry point: main.py: The custom entry point of the plugin. If ommitted, the plugin
will be executed with Python2 interpreter. If included, the plugin will be executed
with an interpreter specified on the first line of the main.py file. For more
information, see the available Python environments.

scb_min_version: The minimum syslog-ng Store Box product version compatible with
the plugin. For example, 5.10.0 means 5F10.

scb_max_version: The maximum compatible syslog-ng Store Box product version. To
allow any version below a certain value, add the ~charater. For example, 5.11.0~
means "any version up till, but not including, 5.11.0".

Example

name: name: SPS_TPAM

description: OneIdentity TPAM plugin
version: 2.0.1

type: credentialstore

api: 1.1

entry_point: main.py

SPS 6.0 Creating custom Credential Store plugins

(ONE IDENTITY
The MANIFEST file

http://yaml.org/spec/

API versioning

SPS supports only a single version of the plugin API.

The required version of SPS API must be in <major number>.<minor number> format.

® | NOTE:

SPS uses semantic versioning for the API. That is, if the plugin requires API version
<x>.<y>, the API version's <major number> must be equal to <x> and the <minor
number> must be equal to, or greater than, <y>. Otherwise the plugin cannot be
uploaded.

For example, if the API version of SPS is 1.3, SPS can use plugins with the required
API version numbers 1.9, 1.1, 1.2, and 1.3. Versions 1.4 and 2.0 will not work.

Currently the API version number is 1.1.

Plugin versioning with Python2 legacy plugins

For Python2 legacy plugins the api: version should be 1.0.

Plugin versioning for Python3 plugins using the Plugin SDK module

For Python3 plugins using the Plugin SDK module the api: version should be the same as
the <major number>.<minor number> version of the Plugin SDK. That is, if the Plugin
SDK version is 1.2, write api: 1.2 in the MANIFEST file.

O [NOTE:

The plugin does not need to be upgraded as long as the <major number> version
remains the same, therefore the plugin should work with 1.3, 1.4 or higher API
versions.

SPS 6.0 Creating custom Credential Store plugins

(ONE IDENTITY
The MANIFEST file

The available Python environments

If you have no entry_point in the MANIFEST file

The plugins must be compatible with Python version 2.6.5, and have access to the following
Python modules:

e dns

e httplib

e json

e 1xml

e openssl

o urllib

e urllib2

e xml

o xmllib

e xmlrpclib

If you have entry_point: main.py in the MANIFEST file (the main.py starting
with "#!/usr/bin/env pluginwrapper3')
In this case, the plugin must be Python 3.6.7 compatible. The plugin has access to these
Python 3 modules:
oneidentity_safeguard_sessions_plugin_sdk (version == 1.1.2,
https://oneidentity.github.io/safeguard-sessions-plugin-sdk/1.1.2/)

© | NOTE:

The <major> and <minor> version number of Plugin SDK is always equal to the SPS
API version of the same release.

The Plugin SDK module mentioned above is a tool that allows you to reliably access SPS
features and can be downloaded from Downloads page. In addition, the Plugin SDK module
also allows you to develop or test plugins outside SPS. For more detailed information about
the Plugin SDK module, see the Developer's Guide here.

e pyOpenSSL (version »= 17.5.0, https://pyopenssl.org/en/17.5.0/index.html)

e python-ldap (version »>= 3.0.0, https://www.python-ldap.org/en/python-1ldap-
3.0.9/)

e requests (version >= 2.18.4, http://docs.python-requests.org/en/master/)
e urllib3 (version >= 1.22, https://urllib3.readthedocs.io/en/latest/)
e pyyaml (version >= 3.12, https://pyyaml.org/)

@NE IDENTITY" SPS 6.0 Creating custom Credential Store plugins

The available Python environments

https://support.oneidentity.com/my-downloads
https://oneidentity.github.io/safeguard-sessions-plugin-sdk/1.1.2/

The main.py module

The main.py file is a Python module that the framework attempts to execute. The following
restrictions apply:

o The main.py module must contain the Plugin class. SPS searches for the plugin hook
implementations under the Plugin class. SPS instantiates this class and invokes the
hooks on the resulting instance.

o The Plugin class must have an __init_ (self, configuration="") method. This is how
the Configuration (for example, at Policies >AA Plugin Configuration >
Configuration or Policies > Credential Stores > Configuration) is passed to
the Plugin instance as string.

o The Plugin class must have member methods for all defined hooks.

The plugin is executed when a predefined entry point (hook method) is invoked. After
returning the result, the plugin exits immediately.

O [NOTE:

Plugins have a global timeout limit. The plugin timeout is half of the timeout value of
the protocol proxy that uses the plugin (configured on the <Protocol name>
Control > Settings page of the SPS web interface). By default, the proxy timeout is
600 seconds,therefore the default plugin timeout is 300 seconds.

Hooks can be defined with zero or more arguments and can usually return None or a dict
with the appropriate keys. The order of the hook arguments is not defined. Instead, all
arguments are passed by name.

All arguments are optional. Only the arguments actually used in the hook need to
be specified.

No global state is preserved inbetween calls. Therefore, you have to use the cookie key in
the returned dictionary to persist data between subsequent calls of the same plugin or
between the different methods of a plugin. The cookie should be a dictionary containing
simple data items. It has to be serializable to JSON. To persist data between two different
plugins used in the same session, use the session_cookie key.

You can use (**kwargs) to get all possible call arguments in a hook, including the
cookie argument.

The following hooks must all be implemented:

o get password list: Called when a password is required to login on the target.
o get private key list: Called when a private key is required to login on the target.
o authentication completed: Called after a successful login attempt.

o session_ended: A session is the logical unit of user connections: it starts with logging
in to the target, and ends when the connection ends. The session_ended hook is the
notification for the end of the session. It is called exactly once for the same session.

SPS 6.0 Creating custom Credential Store plugins

(ONE IDENTITY

The main.py module

get password list

Called when a password is required to login on the target. Can be called multiple times for
the same session.

Input arguments

e session_id
Type: string

Description: The unique identifier of the session.

e cookie
Type: dictionary

Description: The cookie returned by the previous hook in the session. If this is the
first call for that session, it is initialized as an empty dictionary, otherwise it has the
value returned by one of the previous calls in this particular custom Credential Store
plugin. You can use the cookie to maintain the state for each particular connection or
to transfer information between the different methods of the plugin. For an example
that transfers information in the cookie between two methods, see "Examples" in the
Creating custom Authentication and Authorization plugins.

e session_cookie
Type: dictionary

Description: You can use the session cookie to maintain global state between plugins
for each particular connection. If this is the first call for that session, it is initialized
as an empty dictionary, otherwise it has the value returned by a previous plugin hook
in the session.

e protocol
Type: string

Description: The protocol name, in lowercase letters (http, ica, rdp, ssh,
telnet, vnc).

e client_ip

. SPS 6.0 Creating custom Credential Store plugins
(ONE IDENTITY 10

The main.py module

https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.3/creating-custom-authentication-and-authorization-plugins/the-main.py-module/examples/
https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.3/creating-custom-authentication-and-authorization-plugins/the-main.py-module/examples/

Type: string

Description: A string containing the IP address of the client.

o gateway_username
Type: string

e gateway_ password
Type: string

e gateway_groups
Type: list

o gateway domain
string

o target_username
string

o target_host
string

o target_port
Type: int

o target_domain

Type: string

SPS 6.0 Creating custom Credential Store plugins

(ONE IDENTITY

The main.py module

Returned values

e cookie

Type: dictionary

Required: no

Description: The cookie returned by the previous hook in the session. If this is the
first call for that session, it is initialized as an empty dictionary, otherwise it has the
value returned by one of the previous calls in this particular custom Credential Store
plugin. You can use the cookie to maintain the state for each particular connection or
to transfer information between the different methods of the plugin. For an example
that transfers information in the cookie between two methods, see "Examples" in the
Creating custom Authentication and Authorization plugins.

e session_cookie

Type: dictionary

Required: no

Description: You can use the session cookie to maintain global state between plugins
for each particular connection. If this is the first call for that session, it is initialized
as an empty dictionary, otherwise it has the value returned by a previous plugin hook
in the session.

e passwords

Type: string list

Required: no

Description: If the plugin returns multiple passwords, SPS tries to use them to
authenticate on the target server (in the order they are listed).

get private_key list

Called when an SSH private key is required to login on the target. Can be called multiple
times for the same session.

. SPS 6.0 Creating custom Credential Store plugins
(ONE IDENTITY 12

The main.py module

https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.3/creating-custom-authentication-and-authorization-plugins/the-main.py-module/examples/
https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.3/creating-custom-authentication-and-authorization-plugins/the-main.py-module/examples/

Input arguments

e session_id
Type: string

Description: The unique identifier of the session.

e cookie
Type: dictionary

Description: The cookie returned by the previous hook in the session. If this is the
first call for that session, it is initialized as an empty dictionary, otherwise it has the
value returned by one of the previous calls in this particular custom Credential Store
plugin. You can use the cookie to maintain the state for each particular connection or
to transfer information between the different methods of the plugin. For an example
that transfers information in the cookie between two methods, see "Examples" in the
Creating custom Authentication and Authorization plugins.

e session_cookie
Type: dictionary

Description: You can use the session cookie to maintain global state between plugins
for each particular connection. If this is the first call for that session, it is initialized
as an empty dictionary, otherwise it has the value returned by a previous plugin hook
in the session.

e protocol
Type: string
Description: The protocol name, in lowercase letters (http, ica, rdp, ssh,
telnet, vnc).
e client_ip

Type: string

Description: A string containing the IP address of the client.

o gateway_username

Type: string

SPS 6.0 Creating custom Credential Store plugins

(ONE IDENTITY 13

The main.py module

https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.3/creating-custom-authentication-and-authorization-plugins/the-main.py-module/examples/
https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.3/creating-custom-authentication-and-authorization-plugins/the-main.py-module/examples/

o gateway_password
Type: string

o gateway_groups
Type: list

o gateway domain
Type: string

o target_username
Type: string

o target_host
Type: string

o target_port
Type: int

o target_domain

Type: string

Returned values

e cookie

Type: dictionary

Required: no

Description: The cookie returned by the previous hook in the session. If this is the
first call for that session, it is initialized as an empty dictionary, otherwise it has the
value returned by one of the previous calls in this particular custom Credential Store

. SPS 6.0 Creating custom Credential Store plugins
(ONE IDENTITY 14

The main.py module

plugin. You can use the cookie to maintain the state for each particular connection or
to transfer information between the different methods of the plugin. For an example
that transfers information in the cookie between two methods, see "Examples" in the
Creating custom Authentication and Authorization plugins.

e session_cookie

Type: dictionary

Required: no

Description: You can use the session cookie to maintain global state between plugins
for each particular connection. If this is the first call for that session, it is initialized
as an empty dictionary, otherwise it has the value returned by a previous plugin hook
in the session.

e private_keys

Type: tuple list

Required: no

Description: A list of (<key type>, <private key>) tuples. If the plugin returns
multiple private keys, SPS tries to use them to authenticate on the target server (in
the order they are listed).

The key type must be ssh-rsa or ssh-dss. The private key must be a well-formatted
private key blob in PKCS#1 or PKCS#8 in PEM (RFC 1421) format, and must include
the corresponding headers. The Base64-formatted part must correspond to the RFC:
"To represent the encapsulated text of a PEM message, the encoding function's
output is delimited into text lines (using local conventions), with each line except the
last containing exactly 64 printable characters and the final line containing 64 or
fewer printable characters."

X.509 certificates are not supported, only private keys are.

authentication_completed

Called after a successful authentication attempt.

0 | TIP:

You can use this hook to check-in the password to the Credential Store (since the user
will not need it anymore) or to trigger a password change for the host.

. SPS 6.0 Creating custom Credential Store plugins
(ONE IDENTITY 15

The main.py module

https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.3/creating-custom-authentication-and-authorization-plugins/the-main.py-module/examples/
https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.3/creating-custom-authentication-and-authorization-plugins/the-main.py-module/examples/
https://tools.ietf.org/html/rfc1421

Input arguments

e session_id
Type: string

Description: The unique identifier of the session.

e cookie
Type: dictionary

Description: The cookie returned by the previous hook in the session. If this is the
first call for that session, it is initialized as an empty dictionary, otherwise it has the
value returned by one of the previous calls in this particular custom Credential Store
plugin. You can use the cookie to maintain the state for each particular connection or
to transfer information between the different methods of the plugin. For an example
that transfers information in the cookie between two methods, see "Examples" in the
Creating custom Authentication and Authorization plugins.

e session_cookie
Type: dictionary

Description: You can use the session cookie to maintain global state between plugins
for each particular connection. If this is the first call for that session, it is initialized
as an empty dictionary, otherwise it has the value returned by a previous plugin hook
in the session.

Returned values

e cookie

Type: dictionary

Required: no

Description: The cookie returned by the previous hook in the session. If this is the

first call for that session, it is initialized as an empty dictionary, otherwise it has the
value returned by one of the previous calls in this particular custom Credential Store
plugin. You can use the cookie to maintain the state for each particular connection or
to transfer information between the different methods of the plugin. For an example

SPS 6.0 Creating custom Credential Store plugins

(ONE IDENTITY 16

The main.py module

https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.3/creating-custom-authentication-and-authorization-plugins/the-main.py-module/examples/
https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.3/creating-custom-authentication-and-authorization-plugins/the-main.py-module/examples/

that transfers information in the cookie between two methods, see "Examples" in the
Creating custom Authentication and Authorization plugins.

e session_cookie

Type: dictionary

Required: no

Description: You can use the session cookie to maintain global state between plugins
for each particular connection. If this is the first call for that session, it is initialized
as an empty dictionary, otherwise it has the value returned by a previous plugin hook
in the session.

session_ended

A session is the logical unit of user connections: it starts with logging in to the target, and
ends when the connection ends. SPS executes the session_id hook when the session is
closed. It is called exactly once for the same session.

0 | TIP:

You can use this hook to send a log message related to the entire session or close the
ticket related to the session if the plugin interacts with a ticketing system.

You must implement the session_ended method in the plugin.

Input arguments

e session_id
Type: string

Description: The unique identifier of the session.

e cookie
Type: dictionary

Description: The cookie returned by the previous hook in the session. If this is the

first call for that session, it is initialized as an empty dictionary, otherwise it has the
value returned by one of the previous calls in this particular custom Credential Store
plugin. You can use the cookie to maintain the state for each particular connection or
to transfer information between the different methods of the plugin. For an example

. SPS 6.0 Creating custom Credential Store plugins
(ONE IDENTITY 17

The main.py module

https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.3/creating-custom-authentication-and-authorization-plugins/the-main.py-module/examples/
https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.3/creating-custom-authentication-and-authorization-plugins/the-main.py-module/examples/

that transfers information in the cookie between two methods, see "Examples" in the
Creating custom Authentication and Authorization plugins.

e session_cookie

Type: dictionary

Description: You can use the session cookie to maintain global state between plugins
for each particular connection. If this is the first call for that session, it is initialized
as an empty dictionary, otherwise it has the value returned by a previous plugin hook
in the session.

Returned values

This hook does not return values.

session_ended example

The following example formats every information received in the cookie into key-value
pairs and prints a log message that includes this information.

Key-value pairs in log message

def session_ended(self, session_id, session_cookie, cookie):
session_details = ',"'.join([
"{0}={1}".format(key, cookie[key])
for key in sorted(cookie.keys())
D)
print("Session ended; session _id='{@}', session_details="'{1}"'".
format(session_id, session_details))

Plugin modification examples

The following example shows a simple plugin that can return both passwords and private
keys based on usernames:

. SPS 6.0 Creating custom Credential Store plugins
(ONE IDENTITY 18

The main.py module

https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.3/creating-custom-authentication-and-authorization-plugins/the-main.py-module/examples/
https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.3/creating-custom-authentication-and-authorization-plugins/the-main.py-module/examples/

Example: return passwords and username-based private keys

class Plugin(object):
passdb = {
"user": ["password"],
}
privkeydb = {

"userl": [('ssh-rsa', """
ISNFNFIASNFIANSFINSDIIISLLERFEIW++SppInNH1L89WTymILaxgln7FfQ2vr6
aBHymY/+Xwf08GiuLg2hFmfLNGZ1INnFOYB4+307MfjPDZIR1ne8Vrohkte/Suk2
OhZbAeWbxHLsdOvO+ZCm7h5/nEM1gj4va+ukKgpShVbxqEH7Rg1lyUDvKUgQ7KwUZE
GW+RPApnXFN30VjFdAgqOpzeayHOkAS52A3W/ ske81JFGEHVFP54EePIx1gqncJAX1z
JjFP11YjP1IMSLujbH7sabL@+LbnZDfMxOw2NXwnakKPgV1J7I7YQDE1INLhiWbC2f1
pTLIerTOG91lovC3caa7TaIRs8V{ZLjjNXWnS5wIDAQABAOIBAB6HLEgZz5eXIFT+al
ISNFNFIASNFIANSFINSDIIISLLERFEIJW++SppInNH1L89WTymILaxgln7FfQ2vr6
QScd2MYv19dIdumxbk5dK7+5I3fGHroXTRgUF6AIKI2FCsnQtDy TY1mjZ99+dGjH
AjOKnIbKPuaj+Mpx3dLh1lhDgi+DncGSizhOtb3jK1tg++YLoA7W/7n9av5Ybz8co
iqFOWUwcd6KYphul95830PP6GV33Br4jP729EkgXnJa8PcniX8y3Z1FcVmx0GgnL
ISNFNFIASNFIANSFINSDIIISLLERTEJW++SppInNH1L89wTymILaxgln7FfQ2vr6e
UumxiQECgYEA9yPcGBo/R/21yjyKBXjYcd/1u@kYZRWv1loahjNoWQjs/EHvbBMIM
xmtowOHbbEg4BgymPmVR8UXx24B3XJR6SbAPMF15w]70D1WwG8djQSwORrbuPgP4s
0JInRpCn4blpal5n5qUF8wCwnEJow+UUaYY1znM1mAyelWjakK1VHV7tEUCEYEA8MH1
gUHR+hHYZcLTT2+QTuL2Pu2MrwLhXNz5hPcCRH72dKBdfrvpRwLKj3XIKBK4r4gN
hByiT2sJKCNks4LkyOlWQtdokhRuan/xkliH7a6F cx+d50dQsZrRbrjpsUQF1nTB
AFv6kSnhAtmIVDalYWfPSQCUE@NWBITaDU6UGZzsCgYAItvwA4ZQPrtIPB516XeuM
ISNFNFIASNFIANSFINSDIIISLLERFEIW++SppInNH1L89WTymILaxgln7FfQ2vr6
QDIHNO5RiE6WTPH1v1aA/wH71VyXGN9oU4w/9LbsOUSOy50xLLOAbcam2LkXYSdv
ISNFNFIASNFIANSFINSDIIISLLERTEJW++SppInNH1L89wTymILaxgln7FfQ2vr6e
FykNgS4dhrCG3NmpP4zQbKnS+VDQrLl/gqbSG591da8nIs74yanQX17EPuzqD/1iJT
LoahB2128G7BiEfcIpFVCgIN0qikYQkM4o0QD3sUw8ySTi/rZMxGtT34uf7398FH
bBRNA0OGBANRNw90TcSh/ScLNghB1pld81UX8jf+4+9hjou+gpQCkujVxTs7xi18R
ISNFNFIASNFIANSFINSDIIISLLERFEIW++SppInNH1L89WTymILaxgln7FfQ2vr6
31nME@OD1kojABIMeW8cITVHx4PD718jp+3sIPRXzCr8bfTzGSOAA

"1
}
def get private key list(self, session_id, cookie, protocol, client_ ip,
gateway _username, gateway_password,
target_username, target_host, target_port,
target_domain=None, gateway_domain=None,
gateway_groups=None):
keylist = []
if target_username in self.privkeydb:
keylist = self.privkeydb[target_username]

SPS 6.0 Creating custom Credential Store plugins

(ONE IDENTITY 19

The main.py module

print "Retrieved private keys;'
print keylist
else:
print "User not found;"
return {
"private keys": keylist,
}
def get password list(self, session_id, cookie, protocol, client_ip,
gateway_username, gateway_password,
target_username, target_host, target_port,
target_domain=None, gateway_domain=None
gateway_groups=None):
pwlist = []
if target_username in self.passdb:
pwlist = self.passdb[target_username]
print "Retrieved passwords;"
else:
print "User not found;"
return {
"passwords": pwlist,
}
def authentication_completed(self, session_id, cookie):
return None
def session_ended(self, session_id, cookie):
return None

The following example demonstrates how the predefined hooks can be enhanced with
additional logic:

Example: enhance predefined hooks
import inspect

class Plugin(object):
passdb = {
"joe": ["joespwl", "joespw2",],
"jack": ["jackspw", 1,

}

def get password_list(self, session_id, cookie, protocol, client_ip,
gateway_username, gateway_password,
target_username, target_host, target_port,

@NE IDENTITY" SPS 6.0 Creating custom Credential Store plugins

The main.py module

target_domain=None, gateway domain=None, gateway
groups=None):

Discard "None" parameters, log all other returned parameters
args = list(inspect.getargvalues(inspect.currentframe()).args)
logkws = ["{arg}="{value}'".format(arg=arg, value=locals()[arg])
for arg in args if arg != 'self' and locals()[arg] is not None]

if "call _count"™ in cookie:
call count = cookie["call count"]
else:

call count = ©

logkws.append("call count="{0}"'".format(call count))

print ("Retrieving passwords, non-null parameters follow; " + ',
'.join(logkws))

Return the password list for the user
pwlist = []
if target_username in self.passdb:
pwlist = self.passdb[target_username]
print "Retrieved passwords;"
else:
print "User not found;"

return {
"passwords": pwlist,
"cookie": {"call count": call count + 1}

}

def authentication_completed(self, session_id, cookie):
call count = cookie["call count"] if "call count™ in cookie else None
print ("Received notification about completed authentication; "
"call_count="{call count}'").format(call_count=call count)
return None

def session_ended(self, session_id, cookie):
call count = cookie["call count"] if "call count"™ in cookie else None
print ("Received notification about session end; "
"call count="{call count}'").format(call count=call count)
return None

SPS 6.0 Creating custom Credential Store plugins

(ONE IDENTITY

The main.py module

The sample configuration file
(default.cfg)

Your plugin .zip file may contain an optional default.cfg sample configuration file. This file
serves to provide an example configuration that you can use as a basis for customization if
you wish to adapt the plugin to your site's needs.

The only prerequisites for this file are as follows:
« It must be a UTF-8 encoded text file.
« The size of the file must not exceed 10 KiB.

Other than these prerequisites, the contents of the file are not restricted in any way.

SPS 6.0 Creating custom Credential Store plugins

(ONE IDENTITY 22

The sample configuration file (default.cfg)

Plugin troubleshooting

On the default log level, One Identity Safeguard for Privileged Sessions (SPS) logs
everything that the plugin writes to stdout and stderr. Log message lines are prefixed with
the session ID of the proxy, which makes it easier to find correlating messages.

To transfer information between the methods of a plugin (for example, to include data in a
log message when the session is closed), you can use a cookie.

If an error occurs while executing the plugin, SPS automatically terminates the session.

O [NOTE:

This error is not visible in the verdict of the session. To find out why the session was
terminated, you have to check the logs.

SPS 6.0 Creating custom Credential Store plugins

(ONE IDENTITY 23

Plugin troubleshooting

About us

One Identity solutions eliminate the complexities and time-consuming processes often
required to govern identities, manage privileged accounts and control access. Our solutions
enhance business agility while addressing your IAM challenges with on-premises, cloud and
hybrid environments.

Contacting us

For sales and other inquiries, such as licensing, support, and renewals, visit
https://www.oneidentity.com/company/contact-us.aspx.

Technical support resources

Technical support is available to One Identity customers with a valid maintenance contract
and customers who have trial versions. You can access the Support Portal at
https://support.oneidentity.com/.

The Support Portal provides self-help tools you can use to solve problems quickly and
independently, 24 hours a day, 365 days a year. The Support Portal enables you to:

« Submit and manage a Service Request

« View Knowledge Base articles

« Sign up for product notifications

« Download software and technical documentation

« View how-to videos at www.YouTube.com/Oneldentity
« Engage in community discussions

o Chat with support engineers online

« View services to assist you with your product

SPS 6.0 Creating custom Credential Store plugins

(ONE IDENTITY 24

About us

https://www.oneidentity.com/company/contact-us.aspx
https://support.oneidentity.com/
http://www.youtube.com/OneIdentity

	Introduction
	Plugin packaging
	Including additional modules

	The MANIFEST file
	API versioning

	The available Python environments
	The main.py module
	get_password_list
	Input arguments
	Returned values

	get_private_key_list
	Input arguments
	Returned values

	authentication_completed
	Input arguments
	Returned values

	session_ended
	Input arguments
	Returned values
	session_ended example

	Plugin modification examples

	The sample configuration file (default.cfg)
	Plugin troubleshooting
	About us
	Contacting us
	Technical support resources

