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Introduction

The following sections provide an overview on creating custom Credential Store plugins
that can be used to authenticate on the target servers using an external Credential Store
server (for example, a password manager or SSH private key store). For details on using
an existing plugin, see "Integrating external authentication and authorization systems" in
the Administration Guide.

A | CAUTION:

Using custom plugins in SPS is recommended only if you are familiar with
both Python and SPS. Product support applies only to SPS: that is, until the
entry point of the Python code and passing the specified arguments to the
Python code. One Identity is not responsible for the quality, resource
requirements, or any bugs in the Python code, nor any crashes, service
outages, or any other damage caused by the improper use of this feature,
unless explicitly stated in a contract with One Identity. If you want to
create a custom plugin, contact our Support Team for details and
instructions.

The Credential Store plugin is a Python module.One Identity Safeguard for Privileged
Sessions (SPS) invokes the module to request the password or the SSH private key of the
target user. The plugin processes the request, returns the result to SPS, and exits. SPS
then processes the result.

The backup and restore functionality of SPS handles the uploaded Credential Store plugin
as part of SPS's configuration. You do not need to create separate backups of your
Credential Store plugin.
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Plugin packaging

An SPS pluginis a .zip file that contains a MANIFEST file (with no extension) and a Python
module named main.py in its root directory. The plugin .zip file may also contain an
optional default.cfg file that serves to provide an example configuration, which you can
use as a basis for customization if you wish to adapt the plugin to your site's needs. The
size of the .zip file is limited to 20 megabytes.

Including additional modules

You can invoke additional Python modules from main.py, provided that the total size of
the .zip bundle does not exceed 20 megabytes and all calls are executed within the
plugin timeout.

The modules must be compatible with the selected Python environment. For more
information, see the available Python environments.
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The MANIFEST file

The MANIFEST file is a YAML file and should conform to version 1.2 of the YAML specification.

It must contain the following information about the plugin:

« name: The identifier of the plugin during the upload to SPS. The initial character must
be an alphabetical character, while the rest may be alphabetical characters,
numerals or '_'. While case sensitivity is supported, special characters (for example,
'@' or '&") are not permitted.

description: The description of the plugin. This description is displayed on the SPS
web interface.

version: The version number of the plugin. It must begin with a numeral (for
example, 2.0.3).

type: The type of the plugin. It must be credentialstore for a Credential Store plugin
and aa for an Authentication and Authorization plugin.

o api: The version number of the required SPS API. The current version number is 1.1.

It may contain the following elements:

o entry point: main.py: The custom entry point of the plugin. If ommitted, the plugin
will be executed with Python2 interpreter. If included, the plugin will be executed
with an interpreter specified on the first line of the main.py file. For more
information, see the available Python environments.

scb_min_version: The minimum syslog-ng Store Box product version compatible with
the plugin. For example, 5.10.0 means 5F10.

scb_max_version: The maximum compatible syslog-ng Store Box product version. To
allow any version below a certain value, add the ~charater. For example, 5.11.0~
means "any version up till, but not including, 5.11.0".

Example

name: name: SPS_TPAM

description: OneIdentity TPAM plugin
version: 2.0.1

type: credentialstore

api: 1.1

entry_point: main.py
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API versioning

SPS supports only a single version of the plugin API.

The required version of SPS API must be in <major number>.<minor number> format.

® | NOTE:

SPS uses semantic versioning for the API. That is, if the plugin requires API version
<x>.<y>, the API version's <major number> must be equal to <x> and the <minor
number> must be equal to, or greater than, <y>. Otherwise the plugin cannot be
uploaded.

For example, if the API version of SPS is 1.3, SPS can use plugins with the required
API version numbers 1.9, 1.1, 1.2, and 1.3. Versions 1.4 and 2.0 will not work.

Currently the API version number is 1.1.

Plugin versioning with Python2 legacy plugins

For Python2 legacy plugins the api: version should be 1.0.

Plugin versioning for Python3 plugins using the Plugin SDK module

For Python3 plugins using the Plugin SDK module the api: version should be the same as
the <major number>.<minor number> version of the Plugin SDK. That is, if the Plugin
SDK version is 1.2, write api: 1.2 in the MANIFEST file.

O [ NOTE:

The plugin does not need to be upgraded as long as the <major number> version
remains the same, therefore the plugin should work with 1.3, 1.4 or higher API
versions.
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The available Python environments

If you have no entry_point in the MANIFEST file

The plugins must be compatible with Python version 2.6.5, and have access to the following
Python modules:

e dns

e httplib

e json

e 1xml

e openssl

o urllib

e urllib2

e xml

o xmllib

e xmlrpclib

If you have entry_point: main.py in the MANIFEST file (the main.py starting
with "#!/usr/bin/env pluginwrapper3')
In this case, the plugin must be Python 3.6.7 compatible. The plugin has access to these
Python 3 modules:
oneidentity_safeguard_sessions_plugin_sdk (version == 1.1.2,
https://oneidentity.github.io/safeguard-sessions-plugin-sdk/1.1.2/)

© | NOTE:

The <major> and <minor> version number of Plugin SDK is always equal to the SPS
API version of the same release.

The Plugin SDK module mentioned above is a tool that allows you to reliably access SPS
features and can be downloaded from Downloads page. In addition, the Plugin SDK module
also allows you to develop or test plugins outside SPS. For more detailed information about
the Plugin SDK module, see the Developer's Guide here.

e pyOpenSSL (version »= 17.5.0, https://pyopenssl.org/en/17.5.0/index.html)

e python-ldap (version »>= 3.0.0, https://www.python-ldap.org/en/python-1ldap-
3.0.9/)

e requests (version >= 2.18.4, http://docs.python-requests.org/en/master/)
e urllib3 (version >= 1.22, https://urllib3.readthedocs.io/en/latest/)
e pyyaml (version >= 3.12, https://pyyaml.org/)
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The main.py module

The main.py file is a Python module that the framework attempts to execute. The following
restrictions apply:

o The main.py module must contain the Plugin class. SPS searches for the plugin hook
implementations under the Plugin class. SPS instantiates this class and invokes the
hooks on the resulting instance.

o The Plugin class must have an __init_ (self, configuration="") method. This is how
the Configuration (for example, at Policies >AA Plugin Configuration >
Configuration or Policies > Credential Stores > Configuration) is passed to
the Plugin instance as string.

o The Plugin class must have member methods for all defined hooks.

The plugin is executed when a predefined entry point (hook method) is invoked. After
returning the result, the plugin exits immediately.

O [ NOTE:

Plugins have a global timeout limit. The plugin timeout is half of the timeout value of
the protocol proxy that uses the plugin (configured on the <Protocol name>
Control > Settings page of the SPS web interface). By default, the proxy timeout is
600 seconds,therefore the default plugin timeout is 300 seconds.

Hooks can be defined with zero or more arguments and can usually return None or a dict
with the appropriate keys. The order of the hook arguments is not defined. Instead, all
arguments are passed by name.

All arguments are optional. Only the arguments actually used in the hook need to
be specified.

No global state is preserved inbetween calls. Therefore, you have to use the cookie key in
the returned dictionary to persist data between subsequent calls of the same plugin or
between the different methods of a plugin. The cookie should be a dictionary containing
simple data items. It has to be serializable to JSON. To persist data between two different
plugins used in the same session, use the session_cookie key.

You can use (**kwargs) to get all possible call arguments in a hook, including the
cookie argument.

The following hooks must all be implemented:

o get password list: Called when a password is required to login on the target.
o get private key list: Called when a private key is required to login on the target.
o authentication completed: Called after a successful login attempt.

o session_ended: A session is the logical unit of user connections: it starts with logging
in to the target, and ends when the connection ends. The session_ended hook is the
notification for the end of the session. It is called exactly once for the same session.
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get password list

Called when a password is required to login on the target. Can be called multiple times for
the same session.

Input arguments

e session_id
Type: string

Description: The unique identifier of the session.

e cookie
Type: dictionary

Description: The cookie returned by the previous hook in the session. If this is the
first call for that session, it is initialized as an empty dictionary, otherwise it has the
value returned by one of the previous calls in this particular custom Credential Store
plugin. You can use the cookie to maintain the state for each particular connection or
to transfer information between the different methods of the plugin. For an example
that transfers information in the cookie between two methods, see "Examples" in the
Creating custom Authentication and Authorization plugins.

e session_cookie
Type: dictionary

Description: You can use the session cookie to maintain global state between plugins
for each particular connection. If this is the first call for that session, it is initialized
as an empty dictionary, otherwise it has the value returned by a previous plugin hook
in the session.

e protocol
Type: string

Description: The protocol name, in lowercase letters (http, ica, rdp, ssh,
telnet, vnc).

e client_ip

. SPS 6.0 Creating custom Credential Store plugins
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Type: string

Description: A string containing the IP address of the client.

o gateway_username
Type: string

e gateway_ password
Type: string

e gateway_groups
Type: list

o gateway domain
string

o target_username
string

o target_host
string

o target_port
Type: int

o target_domain

Type: string
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Returned values

e cookie

Type: dictionary

Required: no

Description: The cookie returned by the previous hook in the session. If this is the
first call for that session, it is initialized as an empty dictionary, otherwise it has the
value returned by one of the previous calls in this particular custom Credential Store
plugin. You can use the cookie to maintain the state for each particular connection or
to transfer information between the different methods of the plugin. For an example
that transfers information in the cookie between two methods, see "Examples" in the
Creating custom Authentication and Authorization plugins.

e session_cookie

Type: dictionary

Required: no

Description: You can use the session cookie to maintain global state between plugins
for each particular connection. If this is the first call for that session, it is initialized
as an empty dictionary, otherwise it has the value returned by a previous plugin hook
in the session.

e passwords

Type: string list

Required: no

Description: If the plugin returns multiple passwords, SPS tries to use them to
authenticate on the target server (in the order they are listed).

get private_key list

Called when an SSH private key is required to login on the target. Can be called multiple
times for the same session.

. SPS 6.0 Creating custom Credential Store plugins
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Input arguments

e session_id
Type: string

Description: The unique identifier of the session.

e cookie
Type: dictionary

Description: The cookie returned by the previous hook in the session. If this is the
first call for that session, it is initialized as an empty dictionary, otherwise it has the
value returned by one of the previous calls in this particular custom Credential Store
plugin. You can use the cookie to maintain the state for each particular connection or
to transfer information between the different methods of the plugin. For an example
that transfers information in the cookie between two methods, see "Examples" in the
Creating custom Authentication and Authorization plugins.

e session_cookie
Type: dictionary

Description: You can use the session cookie to maintain global state between plugins
for each particular connection. If this is the first call for that session, it is initialized
as an empty dictionary, otherwise it has the value returned by a previous plugin hook
in the session.

e protocol
Type: string
Description: The protocol name, in lowercase letters (http, ica, rdp, ssh,
telnet, vnc).
e client_ip

Type: string

Description: A string containing the IP address of the client.

o gateway_username

Type: string
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o gateway_password
Type: string

o gateway_groups
Type: list

o gateway domain
Type: string

o target_username
Type: string

o target_host
Type: string

o target_port
Type: int

o target_domain

Type: string

Returned values

e cookie

Type: dictionary

Required: no

Description: The cookie returned by the previous hook in the session. If this is the
first call for that session, it is initialized as an empty dictionary, otherwise it has the
value returned by one of the previous calls in this particular custom Credential Store

. SPS 6.0 Creating custom Credential Store plugins
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plugin. You can use the cookie to maintain the state for each particular connection or
to transfer information between the different methods of the plugin. For an example
that transfers information in the cookie between two methods, see "Examples" in the
Creating custom Authentication and Authorization plugins.

e session_cookie

Type: dictionary

Required: no

Description: You can use the session cookie to maintain global state between plugins
for each particular connection. If this is the first call for that session, it is initialized
as an empty dictionary, otherwise it has the value returned by a previous plugin hook
in the session.

e private_keys

Type: tuple list

Required: no

Description: A list of (<key type>, <private key>) tuples. If the plugin returns
multiple private keys, SPS tries to use them to authenticate on the target server (in
the order they are listed).

The key type must be ssh-rsa or ssh-dss. The private key must be a well-formatted
private key blob in PKCS#1 or PKCS#8 in PEM (RFC 1421) format, and must include
the corresponding headers. The Base64-formatted part must correspond to the RFC:
"To represent the encapsulated text of a PEM message, the encoding function's
output is delimited into text lines (using local conventions), with each line except the
last containing exactly 64 printable characters and the final line containing 64 or
fewer printable characters."

X.509 certificates are not supported, only private keys are.

authentication_completed

Called after a successful authentication attempt.

0 | TIP:

You can use this hook to check-in the password to the Credential Store (since the user
will not need it anymore) or to trigger a password change for the host.
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Input arguments

e session_id
Type: string

Description: The unique identifier of the session.

e cookie
Type: dictionary

Description: The cookie returned by the previous hook in the session. If this is the
first call for that session, it is initialized as an empty dictionary, otherwise it has the
value returned by one of the previous calls in this particular custom Credential Store
plugin. You can use the cookie to maintain the state for each particular connection or
to transfer information between the different methods of the plugin. For an example
that transfers information in the cookie between two methods, see "Examples" in the
Creating custom Authentication and Authorization plugins.

e session_cookie
Type: dictionary

Description: You can use the session cookie to maintain global state between plugins
for each particular connection. If this is the first call for that session, it is initialized
as an empty dictionary, otherwise it has the value returned by a previous plugin hook
in the session.

Returned values

e cookie

Type: dictionary

Required: no

Description: The cookie returned by the previous hook in the session. If this is the

first call for that session, it is initialized as an empty dictionary, otherwise it has the
value returned by one of the previous calls in this particular custom Credential Store
plugin. You can use the cookie to maintain the state for each particular connection or
to transfer information between the different methods of the plugin. For an example
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that transfers information in the cookie between two methods, see "Examples" in the
Creating custom Authentication and Authorization plugins.

e session_cookie

Type: dictionary

Required: no

Description: You can use the session cookie to maintain global state between plugins
for each particular connection. If this is the first call for that session, it is initialized
as an empty dictionary, otherwise it has the value returned by a previous plugin hook
in the session.

session_ended

A session is the logical unit of user connections: it starts with logging in to the target, and
ends when the connection ends. SPS executes the session_id hook when the session is
closed. It is called exactly once for the same session.

0 | TIP:

You can use this hook to send a log message related to the entire session or close the
ticket related to the session if the plugin interacts with a ticketing system.

You must implement the session_ended method in the plugin.

Input arguments

e session_id
Type: string

Description: The unique identifier of the session.

e cookie
Type: dictionary

Description: The cookie returned by the previous hook in the session. If this is the

first call for that session, it is initialized as an empty dictionary, otherwise it has the
value returned by one of the previous calls in this particular custom Credential Store
plugin. You can use the cookie to maintain the state for each particular connection or
to transfer information between the different methods of the plugin. For an example
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that transfers information in the cookie between two methods, see "Examples" in the
Creating custom Authentication and Authorization plugins.

e session_cookie

Type: dictionary

Description: You can use the session cookie to maintain global state between plugins
for each particular connection. If this is the first call for that session, it is initialized
as an empty dictionary, otherwise it has the value returned by a previous plugin hook
in the session.

Returned values

This hook does not return values.

session_ended example

The following example formats every information received in the cookie into key-value
pairs and prints a log message that includes this information.

Key-value pairs in log message

def session_ended(self, session_id, session_cookie, cookie):
session_details = ',"'.join([
"{0}={1}".format(key, cookie[key])
for key in sorted(cookie.keys())
D)
print("Session ended; session _id='{@}', session_details="'{1}"'".
format(session_id, session_details))

Plugin modification examples

The following example shows a simple plugin that can return both passwords and private
keys based on usernames:

. SPS 6.0 Creating custom Credential Store plugins
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Example: return passwords and username-based private keys

class Plugin(object):
passdb = {
"user": ["password"],
}
privkeydb = {

"userl": [('ssh-rsa', """
ISNFNFIASNFIANSFINSDIIISLLERFEIW++SppInNH1L89WTymILaxgln7FfQ2vr6
aBHymY/+Xwf08GiuLg2hFmfLNGZ1INnFOYB4+307MfjPDZIR1ne8Vrohkte/Suk2
OhZbAeWbxHLsdOvO+ZCm7h5/nEM1gj4va+ukKgpShVbxqEH7Rg1lyUDvKUgQ7KwUZE
GW+RPApnXFN30VjFdAgqOpzeayHOkAS52A3W/ ske81JFGEHVFP54EePIx1gqncJAX1z
JjFP11YjP1IMSLujbH7sabL@+LbnZDfMxOw2NXwnakKPgV1J7I7YQDE1INLhiWbC2f1
pTLIerTOG91lovC3caa7TaIRs8V{ZLjjNXWnS5wIDAQABAOIBAB6HLEgZz5eXIFT+al
ISNFNFIASNFIANSFINSDIIISLLERFEIJW++SppInNH1L89WTymILaxgln7FfQ2vr6
QScd2MYv19dIdumxbk5dK7+5I3fGHroXTRgUF6AIKI2FCsnQtDy TY1mjZ99+dGjH
AjOKnIbKPuaj+Mpx3dLh1lhDgi+DncGSizhOtb3jK1tg++YLoA7W/7n9av5Ybz8co
iqFOWUwcd6KYphul95830PP6GV33Br4jP729EkgXnJa8PcniX8y3Z1FcVmx0GgnL
ISNFNFIASNFIANSFINSDIIISLLERTEJW++SppInNH1L89wTymILaxgln7FfQ2vr6e
UumxiQECgYEA9yPcGBo/R/21yjyKBXjYcd/1u@kYZRWv1loahjNoWQjs/EHvbBMIM
xmtowOHbbEg4BgymPmVR8UXx24B3XJR6SbAPMF15w]70D1WwG8djQSwORrbuPgP4s
0JInRpCn4blpal5n5qUF8wCwnEJow+UUaYY1znM1mAyelWjakK1VHV7tEUCEYEA8MH1
gUHR+hHYZcLTT2+QTuL2Pu2MrwLhXNz5hPcCRH72dKBdfrvpRwLKj3XIKBK4r4gN
hByiT2sJKCNks4LkyOlWQtdokhRuan/xkliH7a6F cx+d50dQsZrRbrjpsUQF1nTB
AFv6kSnhAtmIVDalYWfPSQCUE@NWBITaDU6UGZzsCgYAItvwA4ZQPrtIPB516XeuM
ISNFNFIASNFIANSFINSDIIISLLERFEIW++SppInNH1L89WTymILaxgln7FfQ2vr6
QDIHNO5RiE6WTPH1v1aA/wH71VyXGN9oU4w/9LbsOUSOy50xLLOAbcam2LkXYSdv
ISNFNFIASNFIANSFINSDIIISLLERTEJW++SppInNH1L89wTymILaxgln7FfQ2vr6e
FykNgS4dhrCG3NmpP4zQbKnS+VDQrLl/gqbSG591da8nIs74yanQX17EPuzqD/1iJT
LoahB2128G7BiEfcIpFVCgIN0qikYQkM4o0QD3sUw8ySTi/rZMxGtT34uf7398FH
bBRNA0OGBANRNw90TcSh/ScLNghB1pld81UX8jf+4+9hjou+gpQCkujVxTs7xi18R
ISNFNFIASNFIANSFINSDIIISLLERFEIW++SppInNH1L89WTymILaxgln7FfQ2vr6
31nME@OD1kojABIMeW8cITVHx4PD718jp+3sIPRXzCr8bfTzGSOAA

"1
}
def get private key list(self, session_id, cookie, protocol, client_ ip,
gateway _username, gateway_password,
target_username, target_host, target_port,
target_domain=None, gateway_domain=None,
gateway_groups=None):
keylist = []
if target_username in self.privkeydb:
keylist = self.privkeydb[target_username]
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print "Retrieved private keys;'
print keylist
else:
print "User not found;"
return {
"private keys": keylist,
}
def get password list(self, session_id, cookie, protocol, client_ip,
gateway_username, gateway_password,
target_username, target_host, target_port,
target_domain=None, gateway_domain=None
gateway_groups=None):
pwlist = []
if target_username in self.passdb:
pwlist = self.passdb[target_username]
print "Retrieved passwords;"
else:
print "User not found;"
return {
"passwords": pwlist,
}
def authentication_completed(self, session_id, cookie):
return None
def session_ended(self, session_id, cookie):
return None

The following example demonstrates how the predefined hooks can be enhanced with
additional logic:

Example: enhance predefined hooks
import inspect

class Plugin(object):
passdb = {
"joe": ["joespwl", "joespw2", ],
"jack": ["jackspw", 1,

}

def get password_list(self, session_id, cookie, protocol, client_ip,
gateway_username, gateway_password,
target_username, target_host, target_port,

@NE IDENTITY" SPS 6.0 Creating custom Credential Store plugins
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target_domain=None, gateway domain=None, gateway
groups=None):

# Discard "None" parameters, log all other returned parameters
args = list(inspect.getargvalues(inspect.currentframe()).args)
logkws = ["{arg}="{value}'".format(arg=arg, value=locals()[arg])
for arg in args if arg != 'self' and locals()[arg] is not None]

if "call _count"™ in cookie:
call count = cookie["call count"]
else:

call count = ©

logkws.append("call count="{0}"'".format(call count))

print ("Retrieving passwords, non-null parameters follow; " + ',
'.join(logkws))

# Return the password list for the user
pwlist = []
if target_username in self.passdb:
pwlist = self.passdb[target_username]
print "Retrieved passwords;"
else:
print "User not found;"

return {
"passwords": pwlist,
"cookie": {"call count": call count + 1}

}

def authentication_completed(self, session_id, cookie):
call count = cookie["call count"] if "call count™ in cookie else None
print ("Received notification about completed authentication; "
"call_count="{call count}'").format(call_count=call count)
return None

def session_ended(self, session_id, cookie):
call count = cookie["call count"] if "call count"™ in cookie else None
print ("Received notification about session end; "
"call count="{call count}'").format(call count=call count)
return None
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The sample configuration file
(default.cfg)

Your plugin .zip file may contain an optional default.cfg sample configuration file. This file
serves to provide an example configuration that you can use as a basis for customization if
you wish to adapt the plugin to your site's needs.

The only prerequisites for this file are as follows:
« It must be a UTF-8 encoded text file.
« The size of the file must not exceed 10 KiB.

Other than these prerequisites, the contents of the file are not restricted in any way.
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Plugin troubleshooting

On the default log level, One Identity Safeguard for Privileged Sessions (SPS) logs
everything that the plugin writes to stdout and stderr. Log message lines are prefixed with
the session ID of the proxy, which makes it easier to find correlating messages.

To transfer information between the methods of a plugin (for example, to include data in a
log message when the session is closed), you can use a cookie.

If an error occurs while executing the plugin, SPS automatically terminates the session.

O [ NOTE:

This error is not visible in the verdict of the session. To find out why the session was
terminated, you have to check the logs.
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About us

One Identity solutions eliminate the complexities and time-consuming processes often
required to govern identities, manage privileged accounts and control access. Our solutions
enhance business agility while addressing your IAM challenges with on-premises, cloud and
hybrid environments.

Contacting us

For sales and other inquiries, such as licensing, support, and renewals, visit
https://www.oneidentity.com/company/contact-us.aspx.

Technical support resources

Technical support is available to One Identity customers with a valid maintenance contract
and customers who have trial versions. You can access the Support Portal at
https://support.oneidentity.com/.

The Support Portal provides self-help tools you can use to solve problems quickly and
independently, 24 hours a day, 365 days a year. The Support Portal enables you to:

« Submit and manage a Service Request

« View Knowledge Base articles

« Sign up for product notifications

« Download software and technical documentation

« View how-to videos at www.YouTube.com/Oneldentity
« Engage in community discussions

o Chat with support engineers online

« View services to assist you with your product
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