(ONE IDENTITY

by Quest

One Identity Manager 9.0

API Development Guide

Copyright 2022 One Identity LLC.

ALL RIGHTS RESERVED.

This guide contains proprietary information protected by copyright. The software described in this
guide is furnished under a software license or nondisclosure agreement. This software may be used
or copied only in accordance with the terms of the applicable agreement. No part of this guide may
be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording for any purpose other than the purchaser’s personal use without the
written permission of One Identity LLC .

The information in this document is provided in connection with One Identity products. No license,
express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of One Identity LLC products. EXCEPT AS SET FORTH IN THE
TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE AGREEMENT FOR THIS PRODUCT,

ONE IDENTITY ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR
STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. IN NO EVENT SHALL ONE IDENTITY BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF

ONE IDENTITY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. One Identity makes
no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and product descriptions at any
time without notice. One Identity does not make any commitment to update the information
contained in this document.

If you have any questions regarding your potential use of this material, contact:

One Identity LLC.
Attn: LEGAL Dept

4 Polaris Way

Aliso Viejo, CA 92656

Refer to our Web site (http://www.Oneldentity.com) for regional and international office
information.

Patents

One Identity is proud of our advanced technology. Patents and pending patents may apply to this
product. For the most current information about applicable patents for this product, please visit our
website at http://www.Oneldentity.com/legal/patents.aspx.

Trademarks

One Identity and the One Identity logo are trademarks and registered trademarks of One Identity
LLC. in the U.S.A. and other countries. For a complete list of One Identity trademarks, please visit
our website at www.Oneldentity.com/legal. All other trademarks are the property of their
respective owners.

Legend

€ | WARNING: A WARNING icon highlights a potential risk of bodily injury or property
damage, for which industry-standard safety precautions are advised. This icon is
often associated with electrical hazards related to hardware.

CAUTION: A CAUTION icon indicates potential damage to hardware or loss of data
if instructions are not followed.

One Identity Manager API Development Guide
Updated - 01 August 2022, 14:23
Version - 9.0

http://www.oneidentity.com/
http://www.oneidentity.com/legal/patents.aspx
http://www.oneidentity.com/legal

Contents

Basic principles of API development ... 5
APL SEIVEIr DASICS ... 5
General information about the API Server ... 5
Calling the API Server web interface 6
BN O Y P ON 6
General notes on programming your own API methods ... 6
Guidelines and conventions ... 7
Handling of API Server QUeNieS 7
Authentication ... 8
Authentication (Primary) Lo 9
LOgging OUL L . 9
Session status and security tOKENS 10
Querying session status 10
API Methods ... 10
General notes and information about entity methods ... 11
HTTP methods ... 16
Date formats ... 16
Parameter formats ... 16
Path ParamMEters . o 16
QUENY ParaM B OIS oo 17
RESPONSE fOIMNAtS . 17
RESPONSE COUBS ..o 18
Avoiding deadloCKs 18
Examples and help - Software Development Kit 19
Implementing your own APIS 20
Creating and editing API plugins ... 20
Compiling TypeScript API clients 21
ImxClient command line program ... 23
Starting the ImxClient command line program 23
ImxClient command OVErVIEW ... 23
@NE |DENT|TY One Identity Manager 9.0 API Development Guide

Quest

COMIPIl DD 24
COM DI D 25
PO Dl 26
CONNECE ... 26
INSEall-aDiS O O 27
FUN=@ DI S N O 28
fetCh-files 29
PUSI-TI S 30
get-apiState . 31
get-fillestate 32
WOIKSPACE-IN O 33
check-translations ... 33
VRESION L 34
About Us 35
CoNtaCtiNg US L. 35
Technical SUPPOIt rE@SOUICES 35
DA OX 36
@NE |DENT|TY One Identity Manager 9.0 API Development Guide

by Quest

Basic principles of API development

In this section, you will find information about API development basics.

Detailed information about this topic

e API Server basics on page 5

» Guidelines and conventions on page 7

API Server basics

In this chapter you will find basic information about the API Servers architecture, which is
important for custom programming with your own API methods.

Detailed information about this topic

» General information about the API Server on page 5
e Calling the API Server web interface on page 6
e Encryption on page 6

* General notes on programming your own API methods on page 6

General information about the API Server

e The API Server deploys the API.
e The API Server is implemented using the Owin Platform (see http://owin.org/).

¢ URLs are case sensitive.

@NE IDENTITY One Identity Manager 9.0 API Development Guide

by Quest Basic principles of API development

http://owin.org/

Calling the API Server web interface

From the API Server's web interface you can:

Configure the API Server.
Call the swagger documentation for your API.
Open the Operations Support Web Portal.

Call all installed web applications.

To call the API Server web interface

In a web browser, open the webpage (URL) of your API Server.

Encryption

The API Server stores data securely encrypted on the client and in the database.

The certificate is configured when the API server is installed on the IIS.

For more information about configuring encryption, see the One Identity Manager Web
Application Configuration Guide.

General notes on programming your own
API methods

Because the API Server is stateless, save the API methods without a client
specific state.

For example, you cannot, therefore, define global variables or store session
object status data. When the API Server processes are restarted, these values
are not restored.

Access to current HTTP requirements over ASP.NET APIs is not supported.
After enabling routes, you cannot change the definition objects anymore.

Use asynchronous code for defining API methods. This supports more efficient usage
of server resources and improves performance of the system under load. The
methods of the API and the underlying object model convert this asynchronousity
using the Task-based Asynchronous Pattern (TAP). For more information about TAP,
see https://docs.microsoft.com/de-de/dotnet/standard/asynchronous-
programming-patterns/task-based-asynchronous-pattern-tap.

Do not use the HttpContext.Current method when you define API methods. You
can query the current HTTP requirements with the
QBM.CompositionApi.ApiManager.Context.Current static method.

If you define API methods that modify data, do NOT use the GET method.

@NE IDENTITY One Identity Manager 9.0 API Development Guide

by Quest Basic principles of API development

https://docs.microsoft.com/de-de/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/de-de/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap

Guidelines and conventions

In this chapter, you will find general policies and conventions, which you must take into
account when you create an API.

Detailed information about this topic

e Handling of API Server queries on page 7

e Authentication on page 8

» Session status and security tokens on page 10
e API methods on page 10

e HTTP methods on page 16

e Date formats on page 16

e Parameter formats on page 16

e Response formats on page 17

e Response codes on page 18

» General notes and information about entity methods on page 11
e Avoiding deadlocks on page 18

Handling of API Server queries

In this section, you will find information about handling queries that are sent to the
API Server.

Authentication

When a query is sent to the API Server, there is a test to ascertain the success of the
primary and, possibly, secondary login in the session for the current project (see
Authentication on page 8).

NOTE: This test is not done if the API method used by the query is marked as
AllowUnauthenticated.

The imx-session-<API project name> cookie is evaluated to allocate the current
session.

If a cookie is passed that cannot be associated with an active session in the current
process, the security token in the cookie is used to set up a new session (see Session status
and security tokens on page 10).

If there is no primary login, the API Server tries to establish a database connection through
one of the enabled single sign-on authentication modules.

If login cannot be carried out, the process is canceled and the HTTP error code 500 is
passed to the client (see Response codes on page 18).

@NE IDENTITY One Identity Manager 9.0 API Development Guide

by Quest Basic principles of API development

Authorizing method access

The API Server checks whether the currently logged in user is authorized to run the
method. If the user does not have the required permissions, the process is canceled and
the HTTP error code 500 is passed to the client (see Response codes on page 18).

Validating the query

The API Server calls the validators stored with the API method one by one. If one fails, the
process is canceled and the HTTP error code 400 is passed to the client (see Response
codes on page 18).

Processing queries (for entity methods)

e GET (for loading entities)
e Determines the WHERE clause with internal and external filters
» Loads data from the database
e Enriches entities with calculated columns

» Entities in delayed logic mode can be changed with a POST query or deleted with a
DELETE query. Entities in this mode are stateless and do not occupy resources on the
server after the query has been processed.

Supported HTTP methods:

e GET (for loading entities)
e POST (for changing entities)
o DELETE (for deleting entities)

» Interactive entities must be created once with a PUT query and after that they obtain
their own ID. Use the ID in subsequent queries (POST or DELETE).

Supported HTTP methods:
e PUT (for creating interactive entities)
e POST (for changing interactive entities)

o DELETE (for deleting interactive entities)

Authentication

User authentication is carried out on the API Server for each API project.

Running an API method requires prior authentication on an API project. If the API method
is marked as AllowUnauthenticated, authentication is not required (you can find an
example in the SDK)

Authentication has two steps:

@NE IDENTITY One Identity Manager 9.0 API Development Guide

Quest Basic principles of API development

1. Required primary authentication: Default authentication through an
authentication module

2. Optional secondary authentication: Multi-factor authentication (by OneLogin)

For more information about configuring authentication, see the One Identity Manager Web
Application Configuration Guide.

Detailed information about this topic

o Authentication (primary) on page 9

e Logging out on page 9

Related topics

» Handling of API Server queries on page 7

Authentication (primary)

You can use the imx/login/ <API project name> API method for primary authentication
on the API project.

To do this, use the POST HTTP method to send a query containing the following:
{ "Module": "RoleBasedPerson", "User": "<user name>", "Password": "<password>" }

| TIP: See the SDK for examples.

Security mechanisms

The API Server uses a security mechanism to prevent cross-site request forgery (XSRF)
attacks. This randomly generates a token (XSRF-TOKEN) and sends it to the clientin a
cookie at login. The client must then transmit the value of this token in an HTTP header (X-
XSRF-TOKEN) in each request sent to the server. If this header is missing, the request is
terminated with error code 400.

TIP: You can change the name of the cookie and HTTP header in the Admin-
istration Portal.

Logging out

You can use the imx/logout/<API project name> API method to log out of the
API project.

To do this, use the POST HTTP method to send a query without content.

@NE IDENTITY One Identity Manager 9.0 API Development Guide

by Quest Basic principles of API development

Session status and security tokens

The status a session is saved in a cookie. This cookie contains an encrypted security token
which is used to restore a login to the API Server if the API Server was restarted in the
mean time. The security token is cryptographically signed by the certificate selected on
installation.

NOTE: If the API Server's current user restarts the browser, the cookie and its session
information are reset.

Related topics

* Querying session status on page 10

Querying session status

You can use the imx/sessions/<API project name> API method to query the status of
the session. The response contains the following information:

e Permitted authentication module and associated parameters of the respective
API project.

» Type of secondary login

API methods

You can define the following types of API methods.

Entity methods

Entity methods work with small parts of the object model in order to read data from the
database or write data to the database. When you create an entity method, you only need
to enter the table and column name and, if required, a filter condition (WHERE clause).
Internal processing is handled by the API Server. The data schema for the input and output
also has a specific format.

For examples for the definition of entity methods, see the SDK under Sdk@1_Basics\01-
BasicQueryMethod.cs.

User-defined methods

User-defined methods are methods for which you fully define the processing, input, and
output data in code. This type therefore offers the greatest flexibility.

For examples for the user-defined methods, see the SDK under Sdk@1_Basics\@3-
CustomMethod.cs.

@NE IDENTITY One Identity Manager 9.0 API Development Guide 10

Quest Basic principles of API development

SQL methods

SQL methods are methods that provide data from a predefined SQL query through the API.
Create the parameters of a query as SQL parameters.

For examples for the definition of SQL methods, see the SDK under Sdke1l_Basics\@2-
BasicSqlMethod.cs.

Detailed information about this topic

» General notes and information about entity methods on page 11

General notes and information about entity
methods

In this section, you will find advice and information for creating and implementing
entity methods.

Limiting results
NOTE: Entity-based methods normally work with a limit to avoid unintentionally loading
extremely large amounts of data.

The following query parameters help you to limit the amount of data that is returned by
obtaining multiple data sets from sequential responses:

Query Default Description
parameter value

PageSize 20 Specifies the maximum number of data sets that can be
contained in the response.

If you only determine the total number and do not want to
obtains single data sets, use the value -1.

StartIndex 0 Specifies as from which data sets the results are returned in
the response.

This parameter is null-based (the first element is addressed
with the value 0).

Example
The following query returns 50 employees and starts with the 101st employee:

https://<Host-Name>/ApiServer/portal/person?PageSize=50&StartIndex=100

@NE IDENTITY One Identity Manager 9.0 API Development Guide 11

by Quest Basic principles of API development

Sort order

Use the Orderby query parameter to sort the results returned in an response. This
parameter allows you to sort the column names of the underlying database table.

Examples
The following query returns employees sorted by first name in ascending order:
https://<Host-Name>/ApiServer/portal/person?0OrderBy=FirstName

Employees sorted in descending order by first name:
https://<host name>/ApiServer/portal/person?0OrderBy=FirstName%20DESC

Filtering

Use the filter query parameter to filter the results returned in an response. A filter like this
consists of a JSON formatted string that must contain the following:

e ColumnName: Name of the column used to filter

o« CompareOp: The operator for comparing the contents of the selected column with
the expected value

The following comparison operators are permitted:

Equal: The results only include data sets with column data that matches the
comparison value.

NotEqual: The results only include data sets with column data that does NOT
match the comparison value.

LowerThan: The results only include data sets with column data less than the
comparison value.

LowerOrEqual: The results only include data sets with column data less than
or equal to the comparison value.

GreaterOrEqual: The results only include data sets with column data greater
than or equal to the comparison value.

Like: Requires the use of a percent sign (%) as a placeholder. You can enter up
to two percent signs in this value. The results only include data sets with
column data that matches the comparison value pattern.

NotLike: Requires the use of a percent sign (%) as a placeholder. You can
enter up to two percent signs in this value. The results only include data sets
with column data that does NOT match the comparison value pattern.

BitsSet: The value is compared to the comparison value using the AND (&)
logical operator. The result must not be equal to 0.

BitsNotSet: The value is compared to the comparison value using the AND (&)
logical operator. The result must be equal to 0.

e Valuel: Comparison value for comparing the contents of the column

@NE IDENTITY One Identity Manager 9.0 API Development Guide 12

Quest Basic principles of API development

e Value 2: If this second comparison value is passed down, the value of CompareOp
is ignored and all the values that are greater or equal to Valuel and less or equal to
Value2 are determined.

Example
The following query returns all employees with the last name "User1":

https://<Host-Name>/ApiServer/portal/person/all?filter=[{ColumnName:
‘LastName', CompareOp: ‘'Equal’', Valuel: 'Userl'}]

Grouping

You can use the group path parameter to group the results returned in a response. You can
use the by query parameter to specify which attribute to use for grouping. Furthermore,
you can use the withcount query parameter to specify (values: true or false) whether to
calculate the number of objects for each group. This may increase the runtime.

NOTE: The API method must support grouping (by using the EnableGrouping
parameter).

The result of the query contains a filter condition that you can pass to the URL
parameter as filter.

Example

The following queries determine the number of identities grouped by primary
location:

https://<host name>/ApiServer/portal/person/all/group?by=UID_
Locality&withcount=true

Response:
e N
{
{
"Display": "(No value: Primary location)",
"Filters": [
{
"ColumnName": "UID_ Locality",
"CompareOp": ©
}
1
"Count": 42
}s
{
"Display": "Berlin",
"Filters": [
{
|\ J
= . .
@NE IDENTIO'[EI One Identity Manager 9.0 API Development Guide 13

Basic principles of API development

"ColumnName": "UID_Locality",
"CompareOp": 0,
"Valuel": "c644f672-566b-4ab0-bac0-2ad07b6cf457"
}
1,

"Count": 12

Hierarchical data structure

Some data model tables are defined as hierarchical structures (Department for example).
Data from such tables is loaded from a specific hierarchy level.

You can use the parentKey query parameter of the parent object to specify the
hierarchy level.

Example

The following query determines the service categories directly below the Access
Lifecycle service category:

https://<host name>/ApiServer/portal/servicecategories?parentKey=QER-
f33d9f6ec3e744a3ab69a474clofeff4

The following query determines the service categories that do not have a parent
service category:

https://<Host-Name>/ApiServer/portal/servicecategories?parentKey=
The following query determines all service categories regardless of their hierarchy:

https://<Host-Name>/ApiServer/portal/servicecategories

You can use the noRecursive path parameter to specify whether the data is queried as a
flat list (values: true or false).

Example

https://<Host-Name>/ApiServer/portal/servicecategories?noRecursive=true

Additional query parameters

You can use the withProperties query parameter to specify whether additional
information from specific tables columns are returned in the response.

@NE IDENTITY One Identity Manager 9.0 API Development Guide 14

by Quest Basic principles of API development

NOTE: To enable table columns for these queries, set the Show in wizards option in the
column properties of the relevant columns in the Designer.

| TIP: You can delimit the names of multiple columns with commas.

Example

The following query determines the number of all identities and also returns their
preferred name and title:

https://<host
name>/ApiServer/portal/person/all?withProperties=PreferredName,Title

Response:
(N
{
"TotalCount": 105950,
"TableName": "Person",
"Entities": [
{

"Display": "100, User (USER1)",
"LongDisplay": "100, User (USER1)",
"Keys": [
"bbf3f8e6-b719-4ec7-be35-cbd6383ef370"
1,
"Columns": {
"DefaultEmailAddress”: {
"Value": "USER1@qs.ber",
"IsReadOnly": true

s
"IdentityType": {
"Value": "Primary",
"IsReadOnly": true,
"DisplayValue": "Primary identity"
¥

"PreferredName": {
"Value": "Johnny",
"IsReadOnly": true

¥
"Title": {
"Value": "Dr.",
"IsReadOnly": true
¥

"XObjectKey": {
"Value": "<Key><T>Person</T><P>bbf3f8e6-b719-4ec7-be35-
cbd6383ef370</P></Key>",
"IsReadOnly": true

}
}
}
\ J
@NE IDENTITY One Identity Manager 9.0 API Development Guide 15
by Quest

Basic principles of API development

HTTP methods

HTTP requests can apply the following HTTP methods:
e GET: This method requests data from the application server.
e PUT: This method changes data on the application server.
e« POST: This method creates data on the application server.

e« DELETE: This method deletes data on the application server.

Date formats

Date values in requests to change or add objects must be specified in ISO 8601 format in
the client's local time zone.

Example
2016-03-19T13:09:08.123Z

Related topics

e Parameter formats on page 16

Parameter formats

HTTP requests use the following types of parameters:

e Path parameters

» Query parameters

Related topics

e Date formats on page 16

Path parameters

Path parameters extend the URL path. A forward slash is used as the delimiter.

If a query uses a path parameters, they are given in URI format.

@NE IDENTITY One Identity Manager 9.0 API Development Guide 16

by Quest Basic principles of API development

Example

https://<host name>/ApiServer/imx/sessions/exampleparameter

Query parameters

Query parameter are appended to the URL with a question mark (?) or an ampersand (&).

The first query parameter must be prefixed by a question mark. In this case, you must use
the following format:

?parameter name=parameter value (for example, ?orderBy=LastName)

Subsequent query parameters must be prefixed by an ampersand. In this case, you must
use the following format:

¶meter name=parameter value (for example, ?sortOrder=ascending)

NOTE: Unknown query parameters are rejected by the server with error code 400. This
also affects query parameters with incorrect upper and lower case spelling.

Example

https://<host name>/AppServer/portal/person?orderBy=LastName

Response formats

Most API methods return results in JSON format (application/json). Furthermore, there is
support for results in CSV and PDF format as long as the result of the respective API
method is declared as exportable (with the AllowExport flag). Basically, an API method
can return results in any format compatible with HTTP.

To obtain results in CSV format

e Inthe query, set Accept header to text/csv.

To obtain results in PDF format

e Inthe query, set Accept header to applciation/pdf.

NOTE: To obtain results in PDF format, the RPS module must be installed on
your system.

Related topics

e Response codes on page 18

@NE IDENTITY One Identity Manager 9.0 API Development Guide 17

by Quest Basic principles of API development

Response codes

Responses that are sent from the REST API use the following codes. If queries fail, an
explanatory error message is displayed.

Response Description

codes

200 Query successful.

204 Query successful. Response has no content.

401 Access not authorized. The session must be authorized first.

404 The given resource could not be found.

405 The HTTP method used is not allowed for this query.

500 A server error occurred. The error message is sent with the response. On

the ground of security, a detailed error message is not included in the
response. For more information, see the application log file on the server.

Related topics

e Response formats on page 17

Avoiding deadlocks

API development includes a lot of asynchronous code with async/await constructs. To avoid
deadlocks, use the ConfigureAwait(false) method for every await keyword.

For more information, see https://blog.stephencleary.com/2012/07/dont-block-on-async-
code.html and https://devblogs.microsoft.com/dotnet/configureawait-faq/.

@NE IDENTITY One Identity Manager 9.0 API Development Guide 18

by Quest Basic principles of API development

https://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
https://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
https://devblogs.microsoft.com/dotnet/configureawait-faq/

Examples and help - Software
Development Kit

To make it easier for you to start developing your API, One Identity provides a Software
Development Kit (SDK) with lots of commented code example.

The SDK can be found on the installation medium in the directory
QBM\dvd\AddOn\ApiSamples.

@NE IDENTITY One Identity Manager 9.0 API Development Guide

by Quest

19
Examples and help - Software Development Kit

Implementing your own APIs

To implement your own APIs, you can create API plugins.

The API Server loads all DLLs matching the *.CompositionApi.Server.PlugIn.dll naming
scheme and deploys the API definitions contained therein.

To implement your own API

1. Create an API plugin (see Creating and editing API plugins on page 20).

2. Compile the appropriate TypeScript API client (see Compiling TypeScript API clients
on page 21).

Detailed information about this topic

« Creating and editing API plugins on page 20
e Compiling TypeScript API clients on page 21

Creating and editing API plugins

With the help of API plugins, you can implement and use your customized APIs.
Prerequisites:
e You use a version management system (for example, Git).

e You use an Integrated Development Environment (IDE).

To create an API plugin

1. Start your IDE (such as Visual Studio).

2. Create a new .NET Framework 4.8 project named
CCC.CompositionApi.Server.Plugin.

3. Add references to the following DLL files from the One Identity Manager
installation directory:

@NE IDENTITY One Identity Manager 9.0 API Development Guide

by Quest Implementing your own APIs

e QBM.CompositionApi.Server.dll
e VI.Base.dll
e VI.DB.d1ll

4. Create the API code.

5. Compile the DLL file in your IDE.

Import the DLL file into your One Identity Manager database using the Software
Loader and assign it to the Business API Server machine role. For more
information on importing files using the Software Loader, see the One Identity
Manager Operational Guide.

7. Restart the API Server and ensure that the CCC.CompositionApi.Server.Plugin.dll
file is present.
To edit an existing API plugin
Start your IDE (such as Visual Studio).
Open the existing .NET Framework 4.8 project.
Edit the API code.
Compile the DLL file in your IDE.

i A W

Import the DLL file into your One Identity Manager database using the Software
Loader and assign it to the Business API Server machine role. For more
information on importing files using the Software Loader, see the One Identity
Manager Operational Guide.

6. Restart the API Server and ensure that the CCC.CompositionApi.Server.Plugin.dll
file is present.

Compiling TypeScript API clients

After you create an API plugin, you need to compile a corresponding TypeScript API client.

To compile a TypeScript API client
1. Open acommand line prompt.
2. Run the following command:
imxclient compile-api -N -W /copyapi imx-api-ccc.tgz /packagename imx-
api-ccc
The dialog to select the database connection is opened.

3. Inthe dialog, perform one of the following actions:

e to use an existing connection to the One Identity Manager database, selectitin
the Select a database connection menu.

@NE IDENTITY One Identity Manager 9.0 API Development Guide 21

Quest Implementing your own APIs

-OR -

» to create a new connection to the One Identity Manager database, click Add
new connection and enter a new connection.

4. Select the authentication method and, under Authentication method, enter the
login data for the database.

Click Log in.

Import the imx-api-ccc npm package into your TypeScript application.

@NE IDENTITY One Identity Manager 9.0 API Development Guide

by Quest Implementing your own APIs

ImxClient command line program

You can use the ImxClient command line tool to run different functions for managing the
API Server and files on the command line.

Detailed information about this topic

» Starting the ImxClient command line program on page 23

e ImxClient command overview on page 23

Starting the ImxClient command line
program

You can start the ImxClient command line tool at any time using any command line
interface.

To start the ImxClient command line program

1. Open a command line interface (for example, Windows Powershell).
2. Inthe command line program, go to the One Identity Manager installation directory.

3. Run the ImxClient.exe application.

ImxClient command overview

The following chapters contain a list of all ImxClient commands that you can run.

Detailed information about this topic

e help on page 24

e compile-app on page 24

e compile-api on page 25

e replon page 26

e connect on page 26

e install-apiserver on page 27
e run-apiserver on page 28

o fetch-files on page 29

@NE IDENTITY One Identity Manager 9.0 API Development Guide

by Quest ImxClient command line program

e push-files on page 30

e get-apistate on page 31

e get-filestate on page 32

e workspace-info on page 33

e check-translations on page 33

e version on page 34

help

Displays a list of available commands.

Parameters

To view help for a specific command, add the command as a parameter.

Example: help fetch-files

Related topics

e ImxClient command line program on page 23

e ImxClient command overview on page 23

compile-app

Runs HTML5 package compilation.

This command performs the following steps:

1. Runs the npm install command in the application folder.
2. Runs the npm run build command in the package folder.

3. Creates the output in subdirectory dist
.The output is stored as a zip file in the database.

Parameters

Login parameters:

e /conn <database connection>: Specifies the database to connect to.

e /dialog <dialog authentication>: Specifies the dialog authentication.

Optional parameter:

@NE IDENTITY One Identity Manager 9.0 API Development Guide

by Quest ImxClient command line program

24

e /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

e off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

e show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

e fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

e /factory <target system>: Specifies the target system for the connection. Enter this
parameter if you want to establish a connection to the application server.

e /workspace <path to working directory>: Specifies the working directory. This
folder contains the application to be compiled. This folder normally contains the
package. json file of the application. If you do not enter anything here, the current
directory is used.

e /app <application project name>: Specifies which application project to compile. If
you do not specify anything here, all application projects are compiled.

-D: Runs debug compilation.
e /copyto <file path>: Saves the result of the compilation as ZIP files in a folder.

e /exclude <module name>: Omits packages of a module at compile time (for
example, AOB).

Related topics

e ImxClient command line program on page 23

e ImxClient command overview on page 23

compile-api
Compiles the API and saves the result to the database.

Parameters

Login parameters:

e /conn <database connection>: Specifies the database to connect to.

e /dialog <dialog authentication>: Specifies the dialog authentication.
Optional parameter:

e /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

@NE IDENTITY One Identity Manager 9.0 API Development Guide 25

Quest ImxClient command line program

e off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

e show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

e fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

e /factory <target system>: Specifies the target system for the connection. Enter this
parameter if you want to establish a connection to the application server.
Example: QBM.AppServer.Client.

e /copyapi <folder path>: Specifies where to copy the imx-api.tgz to.

e /copyapidll <API DLL path>: Specifies which API DLL file to use. The /solution and
/branch parameters are ignored if you use this parameter.

e /nowarn <errorl,error2,...>: Specifies which errors are ignored during compilation.
Enter the codes for the warnings, separated by commas.

e /warnaserror <errorl,error2,...>: Specifies which warnings are displayed as errors
during compilation. Enter the codes for the warnings, separated by commas.
Related topics

e ImxClient command line program on page 23

e ImxClient command overview on page 23

repl

Starts the ImxClient command line tool in REPL mode.

In this mode, the following actions are performed in an infinite loop:

e Read commands from stdin.
e Forward commands to the relevant plugin.

e Qutput the results of processing to stdout.

Related topics

e ImxClient command line program on page 23

e ImxClient command overview on page 23

connect

Establishes a database connection.

@NE IDENTITY One Identity Manager 9.0 API Development Guide 26

by Quest ImxClient command line program

If a connection to a database has already been established, this is closed and a new
connection is then established.

Parameters
Login parameters:

e /conn <database connection>: Specifies the database to connect to.
e /dialog <dialog authentication>: Specifies the dialog authentication.

Optional parameter:

e /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

e off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

e show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

e fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

e /factory <target system>: Specifies the target system for the connection. Enter this
parameter if you want to establish a connection to the application server.
Example: QBM.AppServer.Client.

Related topics

e ImxClient command line program on page 23

e ImxClient command overview on page 23

install-apiserver

Installs an API Server on the local Internet Information Services (IIS).

Parameters
Login parameters:
e /conn <database connection>: Specifies the database to connect to.
e /dialog <dialog authentication>: Specifies the dialog authentication.

Required parameters:

e /app <application name>: Specifies which name is used for the application (for
example, in the brower's titlebar).

e /sessioncert <certificate thumbprint>: Specifies which (installed) certificate is
used for creating and verifying session tokens.

@NE IDENTITY One Identity Manager 9.0 API Development Guide 27

Quest ImxClient command line program

TIP: For example, to obtain a certificate thumbprint, you can use the Manage
computer certificates Windows function and find the thumbprint through the
certificate's detailed information.

Optional parameter:

e /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

e off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

e show: The login window is shown (even is a database is already connected) and

the new connection replaces the old one.

e fallback (default): The current database connection is used. If the database is

not connected, an attempt is made to establish a connection.

e -u: Allows insecure HTTP connections to the API Server website. By default, the API

Server website can only be opened over an encrypted connection.

e /site <site name>: Specifies the website on the IIS under which the web application

will be installed. If you do not enter anything, the website is found automatically
(normally Default website).

e /searchservice <URL>: Specifies the application server's URL that the search service

you want to use is hosted on.
NOTE: If you would like to use the full text search, then you must specify an

application server. You can enter the application server in the configuration file at

a later date.

Related topics

e ImxClient command line program on page 23

e ImxClient command overview on page 23

run-apiserver

Starts or stops a self-hosted API Server.

This command requires a database connection.

Parameters

Login parameters:

e /conn <database connection>: Specifies the database to connect to.

e /dialog <dialog authentication>: Specifies the dialog authentication.

Optional parameter:

@NE IDENTITY One Identity Manager 9.0 API Development Guide

Quest ImxClient command line program

e /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

e off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

e show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

e fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

/factory <target system>: Specifies the target system for the connection. Enter this
parameter if you want to establish a connection to the application server.
Example: QBM.AppServer.Client.

-S: Stops the API Server.

/baseaddress <URL with port>: Specifies the web application's root URL and port.

/baseurl <root URL>: Specifies the web application's URL.

-T: Queries the status of the current API Server.

-B: Locks the console.

Related topics

e ImxClient command line program on page 23

e ImxClient command overview on page 23

fetch-files

Loads a specific machine role from the database and saves it in a local folder.

Parameters
Login parameters:

e /conn <database connection>: Specifies the database to connect to.

e /dialog <dialog authentication>: Specifies the dialog authentication.
Optional parameter:

e /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

e off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

e show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

@NE IDENTITY One Identity Manager 9.0 API Development Guide

Quest ImxClient command line program

e fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

e /factory <target system>: Specifies the target system for the connection. Enter this
parameter if you want to establish a connection to the application server.
Example: QBM.AppServer.Client.

e /workspace <working directory path>: Specifies the working directory where
the files should be placed. If you do not enter anything here, the current
directory is used.

e /targets <targetl;target2;...>: Specifies which machine roles you want to use.

Related topics

e ImxClient command line program on page 23

e ImxClient command overview on page 23

push-files

Saves files that you have changed locally back to the database.

Parameters

Login parameters:

e /conn <database connection>: Specifies the database to connect to.

e /dialog <dialog authentication>: Specifies the dialog authentication.
Optional parameter:

e /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

e off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

e show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

e fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

e /factory <target system>: Specifies the target system for the connection. Enter this
parameter if you want to establish a connection to the application server.
Example: QBM.AppServer.Client.

e /targets <targetl;target2;...>: Specifies which machine roles you want to use.

e /workspace <folder path>: Specifies the working directory where the files are
located that have been modified and are now to be stored in the database.

e /tag <uid>: Specifies the UID of a change tag.

@NE IDENTITY One Identity Manager 9.0 API Development Guide

Quest ImxClient command line program

e /add <filel;file2;...>: Specifies which new database files are added. Use
relative paths.

e /del <filel;file2;...>: Specifies which database files are deleted. Use
relative paths.

e -C: Prevents the saving of changed files and saves only new files, and deletes files
from the database.

Related topics

e ImxClient command line program on page 23

e ImxClient command overview on page 23

get-apistate
Queries the compilation status of the API in the database.

Parameters
Login parameters:

e /conn <database connection>: Specifies the database to connect to.
e /dialog <dialog authentication>: Specifies the dialog authentication.

Optional parameter:

e /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

e off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

e show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

e fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

e /factory <target system>: Specifies the target system for the connection. Enter this
parameter if you want to establish a connection to the application server.
Example: QBM.AppServer.Client.

e /branch <compilation branch ID>: Queries the compilation status of the API saved
under this compilation branch.

e /htmlapp <name of the HTML package>: Returns data for the specified HTML package.
e -D: Returns data for debug assemblies.

e -R: Returns data for release assemblies.

@NE IDENTITY One Identity Manager 9.0 API Development Guide

Quest 31

ImxClient command line program

Related topics

e ImxClient command line program on page 23

e ImxClient command overview on page 23

get-filestate

Compares the local file structure with the file structure in the database.

Using the QBM | ImxClient | get-filestate | NewFilesExcludePatterns configuration
parameter, you can define which files are excluded from the synchronization. This prevents
excessive load during synchronization. The node_modules and imx-modules folders are
excluded from the synchronization by default.

You can adjust the configuration parameters in the Designer. Use the following formats
when defining the rules:

https://docs.microsoft.com/en-
us/dotnet/api/microsoft.extensions.filesystemglobbing.matcher

Use the | character to delimit multiple entries.

NOTE: This configuration parameter is generally only used to exclude new files from the
synchronization. Files that already exist in the database are not taken into account.

Parameters

Login parameters:

e /conn <database connection>: Specifies the database to connect to.

e /dialog <dialog authentication>: Specifies the dialog authentication.
Optional parameter:

e /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

e off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

e show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

e fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

e /factory <target system>: Specifies the target system for the connection. Enter this
parameter if you want to establish a connection to the application server.
Example: QBM.AppServer.Client.

e /targets <targetl;target2;...>: Specifies which machine roles you want to use.

e /workspace <directory path>: Specifies the working directory where the files you
want to match are located. If you do not enter anything here, the current
directory is used.

@NE IDENTITY One Identity Manager 9.0 API Development Guide

Quest ImxClient command line program

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.filesystemglobbing.matcher
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.filesystemglobbing.matcher

Related topics

e ImxClient command line program on page 23

e ImxClient command overview on page 23

workspace-info

Queries the state of the Angular working directory (existing applications and last API
client update).

Parameters

Optional parameter:

e /workspace: Specifies which working directory to query. If you do not enter anything
here, the current directory is used.

Related topics

e ImxClient command line program on page 23

e ImxClient command overview on page 23

check-translations

Searches for captions (multilingual text) with missing translations in a particular folder and
its subfolders.

Parameters

Login parameters:

e /conn <database connection>: Specifies the database to connect to.

e /dialog <dialog authentication>: Specifies the dialog authentication.
Required parameters:

e /path <path to folder>: Specifies the path to the folder you want to check.
Optional parameter:

e /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

e off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

@NE IDENTITY One Identity Manager 9.0 API Development Guide

by Quest ImxClient command line program

e show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

e fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

e /factory <target system>: Specifies the target system for the connection. Enter this
parameter if you want to establish a connection to the application server.
Example: QBM.AppServer.Client.

Related topics

e ImxClient command line program on page 23

¢ ImxClient command overview on page 23

version

Shows the version of the ImxClient command line program in use.

Related topics

e ImxClient command line program on page 23

e ImxClient command overview on page 23

@NE IDENTITY One Identity Manager 9.0 API Development Guide 34

by Quest ImxClient command line program

About us

One Identity solutions eliminate the complexities and time-consuming processes often
required to govern identities, manage privileged accounts and control access. Our solutions
enhance business agility while addressing your IAM challenges with on-premises, cloud and
hybrid environments.

Contacting us

For sales and other inquiries, such as licensing, support, and renewals, visit
https://www.oneidentity.com/company/contact-us.aspx.

Technical support resources

Technical support is available to One Identity customers with a valid maintenance contract
and customers who have trial versions. You can access the Support Portal at
https://support.oneidentity.com/.

The Support Portal provides self-help tools you can use to solve problems quickly and
independently, 24 hours a day, 365 days a year. The Support Portal enables you to:

e Submit and manage a Service Request

» View Knowledge Base articles

e Sign up for product notifications

» Download software and technical documentation

» View how-to videos at www.YouTube.com/Oneldentity
e Engage in community discussions

e Chat with support engineers online

» View services to assist you with your product

@NE IDENTITY One Identity Manager 9.0 API Development Guide 35

by Quest About us

https://www.oneidentity.com/company/contact-us.aspx
https://support.oneidentity.com/
http://www.youtube.com/OneIdentity

Index

A

API development
basics 5

API files 10

async 18

authentication 8
primary 8-9
secondary 8

await 18

basics 5

C

CLI 23

code 18

command line 23
commandos 23
ConfigureAwait 18
conventions 7
Csv 17

Custom method 10

D

data structure
hierarchical 11

date format 16

deadlock 18

(GNE IDENTITY

by Quest

entity methods 10
general 11

examples 19

F
filtering 11

format
date 16
parameter 16

response 17

G
grouping 11

H

help 19
HTTP method 16

I
ImxClient 23

commandos 23
check-translations 33
compile api 25
compile app 24
connect 26
fetch-files 29
get-apistate 31

One Identity Manager 9.0 API Development Guide

Index

get-filestate 32

help 24

install-apiserver 27

push-files 30

repl 26

run-apiserver 28

version 34

workspace-info 33
ImxClient command line program

start 23

L

limit 11
log out 9
login 9

M
method type 16

P
PageSize 11

parameter format 16
query parameter 17
URL parameter 16

PDF 17

policies 7

Q

query
authentication 7
authorization 7
processing 7

validation 7

(GNE IDENTITY

Quest

query parameter 17

R

response 18
response code 18
response format 17
run

command line program 2

S
SDK 19

security token 10
session
status 10
session status
inquiry 10
software development kit 19
sortby 11
SQL files 11
StartIndex 11

T
token 10

U
URL parameter 16

3

One Identity Manager 9.0 API Development Guide

Index

37

	Basic principles of API development
	API Server basics
	General information about the API Server
	Calling the API Server web interface
	Encryption
	General notes on programming your own API methods

	Guidelines and conventions
	Handling of API Server queries
	Authentication
	Authentication (primary)
	Logging out

	Session status and security tokens
	Querying session status

	API methods
	General notes and information about entity methods

	HTTP methods
	Date formats
	Parameter formats
	Path parameters
	Query parameters

	Response formats
	Response codes
	Avoiding deadlocks

	Examples and help – Software Development Kit
	Implementing your own APIs
	Creating and editing API plugins
	Compiling TypeScript API clients

	ImxClient command line program
	Starting the ImxClient command line program
	ImxClient command overview
	help
	compile-app
	compile-api
	repl
	connect
	install-apiserver
	run-apiserver
	fetch-files
	push-files
	get-apistate
	get-filestate
	workspace-info
	check-translations
	version

	About us
	Contacting us
	Technical support resources

	Index

