
One Identity Privilege Manager for Unix
7.1

Administration Guide

Copyright 2021 One Identity LLC.

ALL RIGHTS RESERVED.

This guide contains proprietary information protected by copyright. The software described in this guide
is furnished under a software license or nondisclosure agreement. This software may be used or copied
only in accordance with the terms of the applicable agreement. No part of this guide may be reproduced
or transmitted in any form or by any means, electronic or mechanical, including photocopying and
recording for any purpose other than the purchaser’s personal use without the written permission of
One Identity LLC .
The information in this document is provided in connection with One Identity products. No license,
express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of One Identity LLC products. EXCEPT AS SET FORTH IN THE
TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE AGREEMENT FOR THIS PRODUCT,
ONE IDENTITY ASSUMES NO LIABILITYWHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR
STATUTORYWARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE
IMPLIEDWARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. IN NO EVENT SHALL ONE IDENTITY BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING,WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION OR LOSS OF
INFORMATION) ARISING OUTOF THE USE OR INABILITY TOUSE THIS DOCUMENT, EVEN IF
ONE IDENTITY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. One Identity makes no
representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and product descriptions at any
time without notice. One Identity does not make any commitment to update the information
contained in this document.
If you have any questions regarding your potential use of this material, contact:

One Identity LLC.
Attn: LEGAL Dept
4 Polaris Way
Aliso Viejo, CA 92656

Refer to our Web site (http://www.OneIdentity.com) for regional and international office information.

Patents

One Identity is proud of our advanced technology. Patents and pending patents may apply to this
product. For the most current information about applicable patents for this product, please visit our
website at http://www.OneIdentity.com/legal/patents.aspx.

Trademarks

One Identity and the One Identity logo are trademarks and registered trademarks of One Identity
LLC. in the U.S.A. and other countries. For a complete list of One Identity trademarks, please visit
our website at www.OneIdentity.com/legal. All other trademarks are the property of their
respective owners.

Legend

WARNING: A WARNING icon highlights a potential risk of bodily injury or property
damage, for which industry-standard safety precautions are advised. This icon is
often associated with electrical hazards related to hardware.

CAUTION: A CAUTION icon indicates potential damage to hardware or loss of data if
instructions are not followed.

Privilege Manager for Unix Administration Guide
Updated - February 2021
Version - 7.1

http://www.oneidentity.com/
http://www.oneidentity.com/legal/patents.aspx
http://www.oneidentity.com/legal

Table of Contents

About this guide 1

Introducing Privilege Manager for Unix 2

What is Privilege Manager for Unix 3

Benefits of Privilege Manager for Unix 3

How Privilege Manager for Unix protects 4

Partition root safely 4

Create an indelible audit trail 5

Encryption 5

How Privilege Manager for Unix works 6

Policy configuration file (pmpolicy security policy) 7

Policy group 9

Planning Deployment 11

System requirements 12

Supported platforms 13

Reserve special user and group names 14

Required privileges 14

Estimating size requirements 14

Privilege Manager for Unix licensing 15

Deployment scenarios 16

Single host deployment 17

Medium business deployment 17

Large business deployment 18

Enterprise deployment 19

Installation and Configuration 21

Downloading Privilege Manager for Unix software packages 22

Quick start and evaluation 22

Installing the Management Console 22

Privilege Manager for Unix 7.1 Administration Guide
3

Uninstalling the Management Console 23

Configure a Primary Policy Server 24

Checking the server for installation readiness 24

TCP/IP configuration 25

Firewalls 25

Hosts database 26

Reserve special user and group names 26

Applications and file availability 26

Policy server daemon hosts 27

Local daemon hosts 27

Installing the Privilege Manager for Unix packages 27

Modifying PATH environment variable 28

Configuring the primary policy server for Privilege Manager for Unix 28

pmpolicy server configuration settings 29

Verifying the primary policy server configuration 34

Recompile the whatis database 35

Join hosts to policy group 35

Joining PM Agent to a Privilege Manager for Unix policy server 35

Configure a secondary policy server 40

Installing secondary servers 40

Configuring a secondary server 41

Synchronizing policy servers within a group 41

Install PM Agent on a remote host 42

Checking PM Agent host for installation readiness 42

Installing a PM Agent on a remote host 43

Joining the PM Agent to the primary policy server 43

Verifying PM Agent configuration 44

Load balancing on the client 45

Remove configurations 45

Uninstalling the Privilege Manager for Unix software packages 46

Upgrade Privilege Manager for Unix 47

Before you upgrade 47

Upgrading Privilege Manager for Unix packages 47

Upgrading the server package 48

Upgrading the PM Agent package 48

Privilege Manager for Unix 7.1 Administration Guide
4

Removing Privilege Manager for Unix packages 49

Removing the server package 49

Removing the PM Agent package 49

System Administration 50

Reporting basic policy server configuration information 50

Checking the status of the master policy 51

Checking the policy server 51

Checking policy server status 52

Checking the PM Agent configuration status 52

Installing licenses 53

Displaying license usage 53

Listing policy file revisions 55

Viewing differences between revisions 55

Backup and recovery 56

Managing Security Policy 57

Security policy types 57

Specifying security policy type 59

pmpolicy type policy 59

Modifying complex policies 60

Viewing the security profile changes 61

The Privilege Manager for Unix Security Policy 63

Default profile-based policy (pmpolicy) 63

Policy profiles 63

Profile-based policy files 64

Profile selection 66

Profile variables 66

Exploring profiles 81

Customizing the default profile-based policy (pmpolicy) 83

Customization example - pf_forbidusers list 84

Policy scripting tutorial 86

Install the example policy file 86

Create test users 89

Set Lesson number variable 89

Introductory lessons 90

Privilege Manager for Unix 7.1 Administration Guide
5

Lesson 1: Basic policy 90

Lesson 2: Conditional privilege 91

Lesson 3: Specific commands 92

Lesson 4: Policy optimization with list variables 93

Lesson 5: Keystroke logging 93

Lesson 6: Conditional keystroke logging 95

Lesson 7: Policy optimizations 96

Advanced lessons 97

Lesson 8: Controlling the execution environment 98

Lesson 9: Flow control 99

Lesson 10: Basic menus 100

Sample policy files 101

Main policy configuration file 101

Lesson 1 Sample: Basic policy 103

Lesson 2 Sample: Conditional privilege 104

Lesson 3 Sample: Specific commands 105

Lesson 4 Sample: Policy optimizations with list variables 106

Lesson 5 Sample: Keystroke logging 107

Lesson 6 Sample: Conditional keystroke logging 108

Lesson 7 Sample: Policy optimizations 109

Lesson 8 Sample: Controlling the execution environment 111

Lesson 9 Sample: Flow control 113

Lesson 10 Sample: Basic menus 114

Advanced Privilege Manager for Unix Configuration 116

Privilege Manager for Unix shells 116

Privilege Manager for Unix shell features 117

Forbidden commands 118

Allowed commands 118

Allowed piped commands 118

Check shell built-in commands 119

Read-only variable list 119

Running a shell in restricted mode 119

Additional shell considerations 120

Configuring Privilege Manager for Unix for policy scripting 122

Configuration prerequisites 122

Privilege Manager for Unix 7.1 Administration Guide
6

Configuration file examples 123

Example 1: Basics 124

Example 2: Accept or reject requests 125

Example 3: Command constraints 126

Example 4: Lists 127

Example 5: I/O logging, event logging, and replay 127

Example 6: More complex policies 130

Example 7: Use variables to store constraints 130

Example 8: Control the run-time environment 131

Example 9: Switch and case statements 133

Example 10: Menus 134

Use the while loop 136

Use parallel lists 136

Best practice policy guidelines 137

Multiple configuration files and read-only variables 139

Mail 140

Environmental variables 140

NIS netgroups 141

Specify trusted hosts 141

Configuring firewalls 141

Privilege Manager for Unix port usage 141

Restricting port numbers for command responses 142

Configuring pmtunneld 143

Configuring Network Address Translation (NAT) 144

Configuring Kerberos encryption 144

Configuring certificates 145

Enable configurable certification 146

Configuring alerts 147

Configuring Pluggable Authentication Method (PAM) 148

Utilizing PAM authentication 149

Authenticate PAM to client 149

Administering Log and Keystroke Files 151

Controlling logs 151

Local logging 152

Event logging 153

Privilege Manager for Unix 7.1 Administration Guide
7

Keystroke (I/O) logging 155

Keystroke (I/O) logging policy variables 155

Central logging with Privilege Manager for Unix 157

Controlling log size with Privilege Manager for Unix 158

Viewing the log files using a web browser 159

Viewing the log files using command line tools 159

Listing event logs 161

Backing up and archiving event and keystroke logs 163

InTrust Plug-in for Privilege Manager for Unix 166

InTrust Plug-in requirements 167

Installing InTrust Plug-in components 167

InTrust Plug-in installation prerequisites 168

Configuring the policy server for the InTrust Plug-in 168

Installing the InTrust Knowledge Pack 170

InTrust Knowledge Pack objects 171

Installing the InTrust Reporting Pack 171

Configuring the InTrust data collection 172

Viewing InTrust reports 172

Generating reports 173

Gathering InTrust data 174

Troubleshooting 178

Displaying profile-based policy debug information 178

Enabling program-level tracing 179

Load balancing and policy updates 179

Policy servers are failing 180

Appendix: Privilege Manager for Unix Policy File Components 182

Lexical and syntactic productions 182

Data types 185

Operators and expressions 186

Appendix: Privilege Manager for Unix Variables 190

Variable names 190

Variable scope 191

Global input variables 191

alertkeymatch 195

Privilege Manager for Unix 7.1 Administration Guide
8

argc 196

argv 197

bkgd 197

client_parent_pid 198

client_parent_uid 198

client_parent_procname 199

clienthost 200

command 200

cwd 201

date 201

day 202

dayname 203

domainname 204

env 204

false 205

FEATURE_LDAP 206

FEATURE_VAS 206

gid 207

group 207

groups 208

host 208

hour 209

masterhost 210

masterversion 210

minute 210

month 211

nice 212

nodename 212

optarg 213

opterr 213

optind 213

optopt 213

optreset 214

optstrictparameters 214

pid 214

Privilege Manager for Unix 7.1 Administration Guide
9

pmclient_type 214

pmclient_type_pmrun 215

pmclient_type_sudo 216

pmshell 216

pmshell_builtin 217

pmshell_cmd 218

pmshell_cmdtype 219

pmshell_exe 220

pmshell_interpreter 221

pmshell_prog 222

pmshell_script 223

pmshell_uniqueid 224

pmversion 225

ptyflags 226

requestlocal 227

requestuser 227

rlimit_as 227

rlimit_core 228

rlimit_cpu 228

rlimit_data 228

rlimit_fsize 229

rlimit_locks 229

rlimit_memlock 229

rlimit_nofile 229

rlimit_nproc 230

rlimit_rss 230

rlimit_stack 230

samaccount 231

selinux 231

status 231

submithost 232

submithostip 232

thishost 233

time 234

true 234

Privilege Manager for Unix 7.1 Administration Guide
10

ttyname 235

tzname 235

uid 236

umask 237

unameclient 237

unamemaster 238

uniqueid 238

use_rundir 238

use_rungroup 239

use_rungroups 240

use_runshell 240

user 242

year 242

Global output variables 243

alertkeyaction 246

alertkeysequence 247

disable_exec 247

eventlog 248

eventloghost 248

execfailedmsg 249

iolog 249

iolog_encrypt 250

iolog_errmax 251

iolog_opmax 252

iologhost 253

log_passwords 253

logomit 254

logstderr 255

logstdin 255

logstdout 256

notfoundmsg 257

passprompts 257

pmshell_allow 258

pmshell_allowpipe 259

pmshell_checkbuiltins 259

Privilege Manager for Unix 7.1 Administration Guide
11

pmshell_forbid 260

pmshell_readonly 261

pmshell_reject 262

pmshell_restricted 263

preserve_clienthost 264

profile_keepenv 264

profile_setenv 265

profile_unsetenv 265

profile_use_runuser 266

rejectmsg 266

runargv 267

runbkgd 267

runchroot 267

runcksum 268

runclienthost 269

runcommand 269

runconfirmuser 270

runcwd 271

runenablerlimits 271

runenv 271

rungroup 272

rungroups 273

runhost 273

runnice 274

runpaths 274

runptyflags 275

runrlimit_as 275

runrlimit_core 276

runrlimit_cpu 276

runrlimit_data 276

runrlimit_fsize 277

runrlimit_locks 277

runrlimit_memlock 277

runrlimit_nofile 278

runrlimit_nproc 278

Privilege Manager for Unix 7.1 Administration Guide
12

runrlimit_rss 278

runrlimit_stack 279

runtimeout 279

runumask 279

runuser 280

runutmpuser 280

subprocuser 281

tmplogdir 281

Global event log variables 282

alertdate 283

alerttime 283

event 284

exitdate 285

exitstatus 285

exittime 286

PM settings variables 286

Appendix: Privilege Manager for Unix Flow Control Statements 295

accept, reject 296

break 297

continue 297

do-while 298

for loop 299

for loop 300

function 301

if-else 301

include 302

procedure / function 304

readonly 305

readonlyexcept 306

return 307

switch 308

while 309

Appendix: Privilege Manager for Unix Built-in Functions and Procedures 311

Environment functions 311

Privilege Manager for Unix 7.1 Administration Guide
13

getenv 312

getlistsetting 313

getnumericsetting 313

getstringsetting 314

getyesnosetting 315

keepenv 315

policygetenv 316

policysetenv 317

policyunsetenv 317

setenv 318

unsetenv 318

Hash table functions 319

hashtable_add 319

hashtable_create 320

hashtable_enum 321

hashtable_import 321

hashtable_lookup 322

Input and output functions 323

fprintf 324

input 324

inputnoecho 325

print 326

printf 326

printnnl 327

printvars 328

readdir 328

readfile 329

sprintf 329

syslog 330

LDAP functions 330

ldap_ bind 331

ldap_count_entries 332

ldap_dn2ufn 333

ldap_explode_dn 333

ldap_first_attribute 334

Privilege Manager for Unix 7.1 Administration Guide
14

ldap_first_entry 335

ldap_get_attributes 336

ldap_get_dn 336

ldap_get_values 337

ldap_next_attribute 338

ldap_next_entry 338

ldap_open 339

ldap_search 340

ldap_unbind 341

LDAP API example 342

List functions 344

append 345

insert 345

join 346

length 347

lsubst 347

range 348

replace 348

search 349

split 349

splitSubst 350

Miscellaneous functions 351

atoi 352

authenticate_pam 353

authenticate_pam_toclient 354

basename 355

comparehosts 355

datecmp 356

dirname 356

feature_enabled 357

fileexists, access 358

getopt 358

getopt_long 359

getopt_long_only 360

glob 361

Privilege Manager for Unix 7.1 Administration Guide
15

ingroup 362

innetgroup 362

innetuser, inusernetgroup 363

lineno 364

mktemp 364

osname 365

quote 365

rand 366

stat 366

strftime 367

system 368

timebetween 369

tolower 369

toupper 370

uname 371

Password functions 371

getgrouppasswd 372

getstringpasswd 372

getuserpasswd 373

Remote access functions 374

remotefileexists 374

remotegroupinfo 375

remotegrouplist 376

remotesysinfo 376

remoteusergroups 377

remoteuserinfo 378

remoteuserlist 378

String functions 379

match 379

pad 380

strindex 381

strlen 381

strsub 382

sub 382

subst 383

Privilege Manager for Unix 7.1 Administration Guide
16

substr 383

User information functions 384

getfullname 384

getgroup 385

getgroups 386

gethome 386

getshell 387

Authentication Services functions 388

vas_auth_user_password 388

vas_host_in_ADgrouplist 389

vas_host_is_member 389

vas_user_get_groups 390

vas_user_in_ADgrouplist 390

vas_user_is_member 390

Appendix: Privilege Manager for Unix programs 392

pmbash 396

pmcheck 398

pmclientd 401

pmclientinfo 402

pmcp 403

pmcsh 404

pmincludecheck 406

pminfo 407

pmjoin 408

pmkey 410

pmksh 411

pmless 412

pmlicense 413

pmlist 416

pmloadcheck 417

pmlocald 418

pmlog 420

pmlogadm 424

pmlogsearch 427

pmlogsrvd 431

Privilege Manager for Unix 7.1 Administration Guide
17

pmmasterd 433

pmmg 434

pmpasswd 435

pmpolicy 435

pmpolicyconvert 442

pmpolsrvconfig 443

pmremlog 445

pmreplay 447

Navigating the log file 448

pmresolvehost 449

pmrun 450

pmscp 452

pmserviced 452

pmsh 455

pmshellwrapper 457

pmsrvcheck 457

pmsrvconfig 458

pmsrvinfo 461

pmstatus 462

pmsum 463

pmsysid 464

pmtunneld 465

pmumacs 466

pmverifyprofilepolicy 466

pmvi 467

Appendix: Installation Packages 468

Package locations 468

Installed files and directories 469

About us 472

Contacting us 472

Technical support resources 472

Index 473

Privilege Manager for Unix 7.1 Administration Guide
18

1

About this guide

Welcome to the One Identity Privilege Manager for Unix Administration Guide. This guide
is intended for Windows, Unix*, Linux, and Macintosh system administrators, network
administrators, consultants, analysts, and any other IT professional who will be installing
and configuring Privilege Manager for Unix for the first time.

To simplify the installation and configuration of the Privilege Manager for Unix
components, One Identity recommends that you install Management Console for Unix.
This installation provides a mangement console, a powerful and easy-to-use tool that
dramatically simplifies deployment, enables management of local Unix users and groups,
provides granular reports on key data and attributes, and streamlines the overall
management of your Unix, Linux, and macOS hosts. Please refer to the One Identity
Management Console for Unix Administration Guide for instructions on installing and
configuring the mangement console.

Of course, you can install Privilege Manager for Unix components without using the
Management Console for Unix. This guide explains how to install and configure
Privilege Manager for Unix components for the pmpolicy policy type directly from the
command line.

* The term "Unix" is used informally throughout the Privilege Manager for Unix
documentation to denote any operating system that closely resembles the trademarked
system, UNIX.

Privilege Manager for Unix 7.1 Administration Guide

About this guide
1

2

Introducing Privilege Manager for
Unix

Privilege Manager for Unix protects the full power of root access from potential misuse or
abuse. Privilege Manager for Unix helps you to define a security policy that stipulates who
has access to which root function, as well as when and where individuals can perform those
functions. It controls access to existing programs as well as any purpose-built utilities used
for common system administration tasks. With Privilege Manager for Unix, you do not need
to worry about someone - whether inadvertently or maliciously - deleting critical files,
modifying file permissions or databases, reformatting disks, or damaging UNIX systems in
more subtle ways.

Figure 1: Privilege Manager for Unix protection

Within the UNIX world, common management tasks often require root access.
Unfortunately, native root access is an all-or-nothing proposition. Consequently, as
organizations add new users, fix printer queues, and perform other routine jobs on UNIX

Privilege Manager for Unix 7.1 Administration Guide

Introducing Privilege Manager for Unix
2

systems, the concern for control, compliance, and security grows. These routine tasks
should not expose root passwords to those who don’t need them.

Privilege Manager for Unix also allows administrators to increase security as it protects
sensitive data from network monitoring by encrypting root commands or sessions it
controls. This capability includes control messages and input entered by users as they run
commands through Privilege Manager for Unix.

What is Privilege Manager for Unix

Privilege Manager for Unix allows system administrators to safely share the power of root
and other important accounts by partitioning them among users in a secure manner.
System administrators can specify the circumstances under which users may run certain
programs as root (or other privileged accounts).

The result is that you can safely assign the responsibility for such routine maintenance
activities as adding user accounts and fixing line printer queues to the appropriate people
without disclosing the root password. The full power of root is thus protected from
potential misuse or abuse, reducing the risk of system administrator error or misuse (for
example, modifying databases or file permissions, erasing disks, or more subtle damage).

Privilege Manager for Unix is capable of selectively recording all activities involving root,
including all keyboard input and display output, if required. This indelible audit trail,
combined with the safe partitioning of root functionality, provides an extremely secure
means of sharing the power of root. A replay utility is provided to allow recorded sessions
to be viewed at a later date. Privilege Manager for Unix can also require a checksum match
before running any program, thereby guarding against virus or trojan horse attack on
important accounts.

Additionally, Privilege Manager for Unix can provide an audit trail of:

l all users running commands on a particular host

This may be required if, for example, the host is particularly sensitive, or because
access to this host is chargeable.

l for a particular user

This may be required if, for example, a temporary contractor has been provided
with a login to a host, and the administrator needs to check which files the
contractor has accessed.

Benefits of Privilege Manager for Unix

Privilege Manager for Unix is an important component of any heterogeneous organization's
comprehensive compliance and identity management strategy. It perfectly complements
UNIX identity integration initiatives using Authentication Services and compliance efforts
enhanced through One Identity's Compliance Portal.

Some of the benefits that Privilege Manager for Unix brings to your organization are:

Privilege Manager for Unix 7.1 Administration Guide

Introducing Privilege Manager for Unix
3

l enhanced security through fine-grained, policy-based control of root access

l compliance through compartmentalization of IT tasks that require root access

l visibility and control through automated, secure keystroke logging

l attainment of compliance and internal security standards through automated
gathering of necessary data

l prevention of unapproved UNIX root activity

How Privilege Manager for Unix
protects

Privilege Manager for Unix protects your systems by:

l partitioning root (and other important account) functionality to allow many different
users to carry out system administration tasks

l creating an indelible audit trail of these administration tasks

Partition root safely

The ability to partition system administration actions without compromising the security of
the root account is an extremely powerful one. Privilege Manager for Unix allows you, the
system administrator, to set policies to determine whether and when a user request to run
a program is accepted or rejected.

Through Privilege Manager for Unix, each user can request that a specific program is run
on a specific machine as root (or as another important account such as oracle or admin).
Privilege Manager for Unix evaluates the request; if accepted, it runs the program, locally
or across a network, on behalf of the user.

With Privilege Manager for Unix, Helpdesk personnel can replace passwords for users or
reinstate user accounts. Project members can clear a jammed line printer queue, kill hung
programs, or reboot certain machines. Administration staff can print or delete resource
usage logs or start backups.

Through partitioning, Privilege Manager for Unix allows different users to perform the root
actions for which they are responsible, but prevents them from performing actions for
which they do not have authorization.

Privilege Manager for Unix lets you specify:

l which users can perform a particular task

l which tasks can be run through the system

l when the user can perform the task

l which machine can perform a task

Privilege Manager for Unix 7.1 Administration Guide

Introducing Privilege Manager for Unix
4

l from which machine the user may initiate a request to perform the task

l whether another user’s permission (in the form of a password) is required before the
task is started

l decisions to be made by a program that you supply, which Privilege Manager for Unix
calls to determine if a request should be accepted or rejected

l many other miscellaneous properties of requests

Create an indelible audit trail

Privilege Manager for Unix can record all activity which passes through it, down to the
keystroke level. The power to accurately log root and other account activities in a safe
environment allows you to implement a secure system administration regime with an
indelible audit trail. You always know exactly what is happening in root, as well as who did
it, when it happened and where.

Since root can modify any file, you must ensure that Privilege Manager for Unix logs
are indelible. You can configure Privilege Manager for Unix to receive user requests
from the submitting machine, run tasks on the execution machine, and log all activities
on a third, very secure machine. See the illustration in How Privilege Manager for Unix
works on page 6.

You can make the machine containing the log files physically inaccessible to users and
isolated from remote login over the network. In addition, you can print the logs to hard
copy on a secure printer or recorded to a WORM drive.

You can also assign this secure machine a root password which is unknown to the person
who has physical access to it, but known to someone else without physical access. Two
people would have to conspire to subvert system security.

You may use these and other techniques to achieve a high degree of security around
Privilege Manager for Unix itself, as well as the logs of root activity that it creates.

Encryption

You can encrypt all communication among Privilege Manager for Unix programs, and
between the user and the application being run to guard against network snooping
or spoofing.

Privilege Manager for Unix supports the following encryption algorithms:

l AES

l Kerberos

l TripleDES and DES

Set the encryption method in the /etc/opt/quest/qpm4u/pm.settings file. See the encryption
setting in PM settings variables on page 286 for details.

Privilege Manager for Unix 7.1 Administration Guide

Introducing Privilege Manager for Unix
5

How Privilege Manager for Unix works

The three main Privilege Manager for Unix components are:

l The Client: The client is effectively the user who runs a command from their local
machine by simply performing commands as root using the pmrun prefix.

l The Policy Server: The policy server checks all commands with the policy file to
ensure that the user is allowed to run the command, it then passes the command on
to the agent for action. The policy server also logs the output result (that is, whether
the command was successfully actioned or not), whether you enable keystroke
logging or not.

If you enable keystroke logging, it creates a much more detailed set of log files. The
input/output log stores everything from keystrokes to input and output data. The
event log purely records all of the requests made and their result.

l The Agent: The agent performs the commands which are issued from the policy
server and passes the result back to the client.

Figure 2: Privilege Manager for Unix components

Privilege Manager for Unix comprises four main programs:

l pmrun

l pmmasterd

Privilege Manager for Unix 7.1 Administration Guide

Introducing Privilege Manager for Unix
6

l pmlocald

l pmtunneld

Users submit their requests to run certain programs through Privilege Manager for Unix
using pmrun. For each request, the user may specify a program name and optionally a host
on which the program will run.

The configuration file policy server master daemon (pmmasterd) examines each user
request and either accepts or rejects it based upon information in the Privilege Manager for
Unix configuration file. You can have multiple pmmasterd daemons on the network to avoid
having a single point of failure.

All Privilege Manager for Unix administrative tools, including the configuration commands
are located in the /opt/quest/sbin directory.

Policy configuration file (pmpolicy security
policy)

Users submit their requests to run certain programs as root, or another privileged account,
through Privilege Manager for Unix using pmrun. The policy server daemon, pmmasterd,
examines each request from pmrun, and either accepts or rejects it based upon the policies
specified in the policy file.

The Privilege Manager for Unix configuration file (also referred to as the pmpolicy security
policy) contains the security policy that the policy server master daemon (pmmasterd)
considers when it accepts or rejects user requests. The configuration file can specify
constraints based on certain attributes, such as:

l Username

l Group membership

l Application name

l Application arguments

l Environment variable values

l Umask (file permissions)

l Nice value (priority of jobs run)

l Working directory from which the request may be made

l Host from which a request can be submitted (submitting host)

l tty from which a request is submitted

l Host from which the request will be run (execution host)

l A remote, dedicated host to store iologs and/or eventlogs

l Time of day and day of week that the user is allowed to run the application

l Exit status or output of any specified program to be run as part of the decision-
making process

Privilege Manager for Unix 7.1 Administration Guide

Introducing Privilege Manager for Unix
7

l A challenge to the user to type in one or more specified user passwords (requires on-
the-spot approval from those users, such as supervisors or managers)

l Whether the program being requested has a checksum that matches the one stored
for that application in the configuration file (protects against possible virus or trojan
horse attack)

l Store all information for each request in a log file

l Record all keystrokes and/or output in a dribble file

l Some other miscellaneous job properties

If Privilege Manager for Unix accepts the request, the Privilege Manager for Unix local
daemon (pmlocald) runs the application program as the runuser selected in the policy file,
piping all input/output back to the user’s terminal. In addition, you can specify in the
configuration file that you want to store all information for each request in a log file, and
optionally record all keystrokes, output, or both, in an I/O file for later replay. You can
replay the file in real time, so you can observe the commands as they are issued.

You can restrict responses to a small designated range of reserved port numbers by setting
parameters in /etc/opt/quest/qpm4u/pm.settings. This enhances the security of
communications between pmlocald and pmmasterd when the two must communicate across a
firewall. See PM settings variables on page 286 for details.

Privilege Manager for Unix utilizes NAT (Network Address Translation) to further restrict
responses to a single designated port when pmlocald and pmmasterdmust communicate
across a firewall.

You can issue commands either in the foreground or background. If you run them in the
background, you can continue to use the same shell process to issue additional commands.
See Privilege Manager for Unix shells on page 116 for details.

The policy file is:

l Located on the policy server daemon host

l Created in pm.conf

By default, the policy file is named pm.conf and is located in the directory specified by
policyfile. If the full path name for the pm.conf file is not specified in policyfile, the
path is relative to policydir.

l Owned by root

Only root can have write permission for the configuration file. Otherwise, a user might gain
illegal access to the root account through modification of the file. To prevent someone from
replacing the entire /etc directory or its contents, both / and /etc have permission modes
that do not allow users to modify them.

The configuration file contains statements and declarations in a language specifically
designed to express policies concerning the use of root and other controlled accounts.

For example, if your policy is: Allow user robyn to run the /bin/passwd program as root on
the galileo machine Monday through Friday, during office hours (8:00 a.m. to 5:00 p.m.),
add the following to your policy file:

Privilege Manager for Unix 7.1 Administration Guide

Introducing Privilege Manager for Unix
8

weekdays={"Mon", "Tue", "Wed", "Thu", "Fri"}; if (user=="robyn" && command=="passwd"
&& host=="galileo" && timebetween(800, 1700) && dayname in weekdays) {
runuser="root"; runcommand="/bin/passwd"; accept; }

Do not use a leading zero for any time between 00:00 and 9:59 a.m. For example, when
specifying 7:00 a.m., use 700 rather than 0700. Specify 12:30 am as 30 or 2430. Privilege
Manager for Unix interprets numbers with leading zeroes as octal numbers: 0700 octal is
560 decimal, which is not a valid time.

Policy group

A policy group is a group of one or more policy servers – one primary server and any
number of secondary servers. You can configure multiple policy servers in a policy group to
share a common configuration for load balancing and redundancy.

Policy servers are responsible for evaluating the security policy and accepting or rejecting
the agent request based on the constraints in the security policy. A policy group is one or
more policy servers which have been configured to share a common policy.

Privilege Manager for Unix 7.1 Administration Guide

Introducing Privilege Manager for Unix
9

Figure 3: Policy group

When the first policy server in the group is configured, it becomes the primary policy
server and sole member of the policy group. To support load balancing and redundancy,
you may add secondary policy servers to the policy group.

If a policy server becomes unavailable for any reason, hosts joined to the group will find
the next available server in the policy group to service their requests. Any failover is
transparent to the hosts, as the same policy is enforced by all policy servers within the
policy group.

The primary policy server hosts the master copy of the policy from which the secondary
servers receive updates. You can initiate changes to the policy from any policy server using
the pmpolicy command. Once completed, the changes are committed to the master copy,
and policy servers are automatically updated.

See pmpolicy on page 435 for more information about the syntax and usage of this
command.

Privilege Manager for Unix 7.1 Administration Guide

Introducing Privilege Manager for Unix
10

3

Planning Deployment

Before you run the installer, consider the following questions:

1. Which machines in your network will run policy servers?

If you only plan to use one policy server for an entire network, it should be the most
reliable and secure machine.

You can specify multiple policy servers to avoid having a single point of failure.

If more than 150 users will be using a single pmmasterd for validation, you will want to
have multiple policy servers to avoid a UNIX network resource bottleneck. Plan to
have a maximum of 150 users validating at a single policy server.

2. Which machines will be managed hosts?

Only those hosts running the local daemon (PM Agent package) may receive and run
Privilege Manager for Unix requests. See pmlocald on page 418 for details.

One Identity recommends that you initially specify one policy server and three
or four local hosts when you first install and experiment with Privilege
Manager for Unix.

3. What level of protection do you require?

If you require greater protection, you can select an encryption level such as AES, or
a dedicated encryption system such as Kerberos. When configuring Privilege
Manager for Unix in interactive mode, you are asked if you are using Kerberos. If
you are using Kerberos, Privilege Manager for Unix automatically uses Kerberos for
encryption.

You can configure the policy file to require a checksum match to authorize program
execution. If configured in the policy, Privilege Manager for Unix runs the program
only if its checksum matches that configured in the policy file. By default, it uses a
CRC algorithm, but you can configure the MD5 algorithm instead by setting the
keyword checksumtype to MD5 in pm.settings.

4. Which port numbers should pmmasterd and pmlocald use to listen for network
requests?

Choose numbers that do not conflict with other numbers in the /etc/services
file. Ensure these entries are propagated to all machines accessing Privilege
Manager for Unix.

Privilege Manager for Unix 7.1 Administration Guide

Planning Deployment
11

5. Which directory should contain the Privilege Manager for Unix log files?

By default, the log files are placed in /var/adm or /var/log depending on the host
architecture. The installer allows you to change the directory by specifying command
line options to the Privilege Manager for Unix daemons. The partition needs to
contain enough space for log files to increase in size.

System requirements

Prior to installing Privilege Manager for Unix, ensure your system meets the minimum
hardware and software requirements for your platform.

Component Requirements

Operating systems See Supported platforms to review a list of platforms that
support Privilege Manager for Unix clients.

Disk space 80 MB of disk space for program binaries and manuals for
each architecture.

Considerations:

l At a minimum, you must have 80 MB of free disk space.
The directories in which the binaries are installed must
have sufficient disk space available on a local disk drive
rather than a network drive. Before you install Privilege
Manager for Unix, ensure that the partitions that will
contain /opt/quest have sufficient space available.

l Sufficient space for the keystroke logs, application logs,
and event logs. The size of this space depends on the
number of servers, the number of commands, and the
number of policies configured.

l The space can be on a network disk drive rather than a
local drive.

l The server hosting Privilege Manager for Unix must be a
separate machine dedicated to running the pmmasterd
daemon.

SSH software You must install and configure SSH client and server software
on all policy server hosts.

You must enable access to SSH as the root user on the policy
server hosts during configuration of the policy servers. Both
OpenSSH 4.3 (and later) and Tectia SSH 6.4 (and later) are
supported.

Table 1: Hardware and software requirements

Privilege Manager for Unix 7.1 Administration Guide

Planning Deployment
12

Component Requirements

Processor Policy Servers: 4 cores

Policy Servers: 4GB

Supported platforms

The following table provides a list of supported platforms for Privilege Manager for
Unix clients.

Platform Version Architecture

Amazon Linux AMI x86_64

CentOS Linux 5, 6, 7, 8 Current Linux architectures: s390, s390x,
PPC64, PPC64le, ia64, x86, x86_64, AARCH64

Debian Current
supported
releases

x86_64, x86, AARCH64

Fedora Linux Current
supported
releases

x86_64, x86, AARCH64

OpenSuSE Current
supported
releases

x86_64, x86, AARCH64

Oracle Enterprise Linux
(OEL)

5, 6, 7, 8 Current Linux architectures: s390, s390x,
PPC64, PPC64le, ia64, x86, x86_64, AARCH64

Red Hat Enterprise Linux
(RHEL)

5, 6, 7, 8 Current Linux architectures: s390, s390x,
PPC64, PPC64le, ia64, x86, x86_64, AARCH64

SuSE Linux Enterprise
Server (SLES)/Work-
station

11, 12, 15 Current Linux architectures: s390, s390x,
PPC64, PPC64le, ia64, x86, x86_64, AARCH64

Ubuntu Current
supported
releases

x86_64, x86, AARCH64

Table 2: Linux supported platforms — server and client

Privilege Manager for Unix 7.1 Administration Guide

Planning Deployment
13

https://wiki.debian.org/DebianReleases
https://wiki.debian.org/DebianReleases
https://wiki.debian.org/DebianReleases
https://fedoraproject.org/wiki/Releases#Current_Supported_Releases
https://fedoraproject.org/wiki/Releases#Current_Supported_Releases
https://fedoraproject.org/wiki/Releases#Current_Supported_Releases
https://en.opensuse.org/Lifetime#Supported_distributions
https://en.opensuse.org/Lifetime#Supported_distributions
https://en.opensuse.org/Lifetime#Supported_distributions
https://wiki.ubuntu.com/Releases/#Current
https://wiki.ubuntu.com/Releases/#Current
https://wiki.ubuntu.com/Releases/#Current

Platform Version Architecture

Apple macOS 10.12, 10.13, 10.14, 10.15 x86_64

FreeBSD 11.x, 12.x x86_64

HP-UX 11.31 PA, IA-64

IBM AIX 7.1 Technology Level 3 and higher, 7.2 Power 4+

Solaris 10.x, 11.x SPARC, x64

Table 3: Unix and Mac supported platforms — client

Reserve special user and group names

Reserve the following names for Privilege Manager for Unix usage:

l pmpolicy (user and group)

l pmlog (group)

For more information, see Reserve special user and group names on page 26.

Required privileges

You will need root privileges to install Privilege Manager for Unix software. Either log in as
root or use the su program to acquire root privileges. Due to the importance of the root
account, Privilege Manager for Unix carefully protects the system against certain
accidental or deliberate situations that might lead to a breach in security. For example, if
Privilege Manager for Unix discovers that its configuration files are open to modification by
non-root users, it will reject all job requests. Furthermore, all Privilege Manager for Unix
directories back to the / directory are checked for security in the same way, to guard
against accidental or deliberate replacement.

Estimating size requirements

Keystroke and event log disk space requirements

The amount of disk space required to store keystroke logs will vary significantly based on
the amount of terminal output generated by the user's daily activity and the level of logging
configured. An average Privilege Manager for Unix keystroke log will contain an additional

Privilege Manager for Unix 7.1 Administration Guide

Planning Deployment
14

4KB of data on top of the amount of data displayed to the user's terminal. Taking an
average of the amount of terminal output generated by a few users over the course of a
normal day would allow for an approximate estimation to be calculated. For example, a
developer using a vi session throughout the day may generate 200KB of terminal output. A
team of 200 developers each generating a similar amount of terminal output per working
day could be expected to use 31GB of disk space over a three-year period [204 (200 +
4KB) x 200 (developers) x 260 (working days) x 3 (years) = 31,824,000].

The level of logging can also be configured to reduce the overhead on the Masters. For
example, some customers only log the user's input (key presses) which will dramatically
reduce the amount of logging.

Event log entries will typically use 4-5KB of storage per event, but may vary slightly
depending on the data stored in the events. For example, events might be slightly larger
for users that have lots of environment variables defined. Taking an average of the number
of events that occur over the course of a normal day should allow you to estimate the disk
space requirements for event logs. For example, if the same team of developers generate
1,000 events in a normal working day, they would be expected to use nearly 4GB of disk
space over a three-year period [5 (KB) * 1000 (events) * 260 (days) * 3 (years) =
3,900,000].

Policy server deployment requirements

The following recommendations are only provided as a rough guideline. The number of
policy servers required for your environment may vary greatly depending on usage.

l One policy server is suitable for small test environments with less than 50 hosts.

l Production environments should have a minimum of two policy servers.

l Add an additional policy server for every 150-200 Privilege Manager for Unix hosts.

l Additional policy servers may be required to support geographically disparate
locations.

Privilege Manager for Unix licensing

Privilege Manager for Unix 7.1 licensing options include:

30-day evaluation licenses

Privilege Manager for Unix evaluation license allows you to manage unlimited PM Agent
hosts for 30 days.

Commercial licenses

A PM Policy license is required for Privilege Manager for Unix features.

Although licenses are allocated on a per-agent basis, you install the licenses on Privilege
Manager for Unix policy servers.

Privilege Manager for Unix 7.1 Administration Guide

Planning Deployment
15

The pmlicense command allows you to display current license information, update a license
(an expired one or a temporary one before it expires) or create a new one. See Installing
licenses on page 53 or Displaying license usage on page 53 for more examples of using the
pmlicense command.

Deployment scenarios

You can deploy Privilege Manager for Unix software within any organization using UNIX
and/or Linux systems. Privilege Manager for Unix offers a scalable solution to meet the
needs of the small business through to the extensive demands of the large or global
organization.

There is no right or wrong way to deploy Privilege Manager for Unix, and an understanding
of the flexibility and scope of the product will aid you in determining the most appropriate
solution for your particular requirements. This section describes the following sample
implementations:

l a single host installation

l a medium-sized business installation

l a large business installation

l an enterprise installation

Configuration options

Decide which of the following configurations you want to set up:

1. Primary Server Configuration: Configure a single host as the primary policy
server hosting the security policy for the policy group using either the pmpolicy
(Privilege Manager for Unix) or sudo (Safeguard for Sudo) policy type. See Security
policy types on page 57 for more information about these policy types.

If you are configuring the primary policy server using the sudo policy type, see the
One Identity Privilege Manager for Sudo Administration Guide.

2. Secondary Server Configuration: Configure a secondary policy server in the
policy server group to obtain a copy of the security policy from the primary
policy server.

3. PM Agent Configuration: Join a Privilege Manager for Unix Agent host to a
pmpolicy server group.

Policy servers can only be joined to policy groups they host (that is, manage). You
cannot join a Sudo Plugin host to a pmpolicy server group or the PM Agent host to a
sudo policy server group.

Privilege Manager for Unix 7.1 Administration Guide

Planning Deployment
16

Single host deployment

A single-host installation is typically appropriate for evaluations, proof of concept, and
demonstrations of Privilege Manager for Unix. This configuration example installs all of the
components on a single UNIX/Linux host, with protection offered only within this single
host. All logging and auditing takes place on this host.

Medium business deployment

The medium business model is suitable for small organizations with relatively few hosts to
protect, all of which may be located within a single data center.

This configuration example comprises multiple UNIX/Linux hosts located within the SME
space and one or more web servers located in a DMZ.

The tunneling feature (pmtunneld on page 465), enables Privilege Manager for Unix to
control privileged commands on the web servers across a firewall, within the DMZ. This
configuration significantly reduces the number of open ports at the firewall.

Multiple policy server components (pmmasterd on page 433) are installed in a failover
configuration, with groups of agents balanced between the policy servers. If a policy server
is unavailable for any reason, the agents will failover to the alternative policy server.

Privilege Manager for Unix 7.1 Administration Guide

Planning Deployment
17

Figure 4: Medium business implementation: Minimum 2 Masters and Circa
100 Agents

Large business deployment

This is an example of how a large business might deploy Privilege Manager for Unix. Some
global companies prefer to fragment their requirement and deploy multiple instances as
shown in the medium-sized business model.

This example comprises three policy servers, two are balancing the load of multiple
agents. This may be necessary if there is a high level of audit and/or a significant volume
of requested elevated privilege. Further, there is an additional policy server configured as
a failover should one or both policy servers become unavailable.

Privilege Manager for Unix 7.1 Administration Guide

Planning Deployment
18

Figure 5: Large business implementation: Minimum 3 Masters and less than
1000 Agents

Enterprise deployment

This example is based on an organization with offices in London and New York. Again, as
with the medium-sized business example, the web servers and corporate web-based
applications reside in a DMZ. The requirement to run commands at an elevated level from
inside the firewall remains.

Access to the web server and web applications is predominantly, but not exclusively, from
the London office. Privilege Manager for Unix tunnelling components are used to breach the
firewall to the DMZ.

In addition, internal firewalls are located between the offices in London and New York, and
tunneling components are deployed to enable access from office to office and indeed from
anywhere to the DMZ.

Within each office, multiple policy servers are configured for load balancing, with each
policy server serving a number of agents.

Privilege Manager for Unix 7.1 Administration Guide

Planning Deployment
19

Figure 6: Enterprise deployment implementation: Minimum 4 Masters and 1000
Agents and above

You can extend each of the models described above by, for example, adding more policy
servers, configuring additional load balancing, assigning dedicated audit, logging and
reporting servers. The models provide a small indication of the flexibility and modular way
in which you can configure and implement Privilege Manager for Unix to meet the precise
requirements of any size business.

Privilege Manager for Unix 7.1 Administration Guide

Planning Deployment
20

4

Installation and Configuration

This is an overview of the steps necessary to set up your environment to use Privilege
Manager for Unix software:

To configure a primary policy server

1. Check the server for installation readiness.

2. Install the Privilege Manager for Unix policy server package.

3. Configure the primary policy server.

4. Join the primary policy server to policy group.

To configure a secondary policy server

1. Check the host for installation readiness.

2. Install the Privilege Manager for Unix policy server package.

3. Configure the secondary policy server.

4. Join the PM Agent to the secondary policy server.

To install the PM Agent on a remote host

1. Check the remote host for installation readiness.

2. Install the Privilege Manager for Unix software on the remote host.

3. Join the PM Agent to the policy server.

The following topics walk you through these steps.

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
21

Downloading Privilege Manager for Unix
software packages

To download the Privilege Manager for Unix software packages

1. Go to https://support.oneidentity.com/privilege-manager-for-unix .

2. On the Product Support - Privilege Manager for Unix page, click Software
Downloads under Self Service Tools in the left pane.

3. On the Privilege Manager for Unix - Download Software page, click
Download to the right of the version to be downloaded.

See Installation Packages on page 468 for more information about Privilege Manager
for Unix native platform install packages.

4. Read the License Agreement, select the I have read and accept the agreement
option, and click Submit.

5. Download the relevant package from the web page. The Privilege Manager for Unix
server package includes the PM Agent and the Sudo Plugin components.

Quick start and evaluation

To simplify the installation and configuration of the Privilege Manager for Unix components,
One Identity recommends that you install One IdentityManagement Console for Unix.
Management Console for Unix provides a web-based mangement console, a powerful and
easy-to-use tool that dramatically simplifies deployment, enables management of local
Unix users and groups, provides granular reports on key data and attributes, and
streamlines the overall management of your Unix, Linux, and macOS hosts.

You can download the Management Console for Unix install package from the same
Download Software page where you downloaded the Privilege Manager for Unix
software packages.

To test Privilege Manager for Unix, you must set up at least one primary policy server and
one remote host system configured with the PM Agent.

Installing the Management Console

Management Console for Unix makes it easy for you to centrally manage a policy file on a
primary policy server.

You can install the mangement console on Windows, Unix, or macOS computers. Each
hosting platform prompts for similar information.

The following install files are located on the Privilege Manager for Unix distribution media
under console | server:

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
22

https://support.oneidentity.com/privilege-manager-for-unix/

l ManagementConsoleForUnix_unix_2_5_2.sh - for Unix and Linux

l ManagementConsoleForUnix_windows_2_5_2.exe - for Windows

l ManagementConsoleForUnix_windows-x64_2_5_2.exe - for Windows

The One IdentityManagement Console for Unix Administration Guide contains detailed
instructions for installing the mangement console on all of these platforms. Use the
following procedure to install the mangement console on a Unix computer from the
command line using the installation script:

To install the mangement console on a Unix platform

1. Log in and open a root shell.

2. Mount the installation media and navigate to console | server.

3. Run the following command from the Unix command line as root:

sh ManagementConsoleForUnix_unix_2_5_2.sh

You can optionally use one of these options:

l -q option (quiet mode) to automatically accept all the default settings.

l -c option (console mode) to prompt you for information interactively.

Using no option starts the installer in a graphical user interface if you have an
X server, making the installation experience similar to running it from the
Windows autorun.

In console mode, it asks you for the following information:

a. Enter 1 to accept the user agreement.

b. Enter the SSL Port number or press Enter to accept the default of 9443.

c. Enter the Non-SSL Port number or press Enter to accept the default of 9080.

The install wizard extracts and downloads the files, configures and starts the service,
and so forth. On Unix, the install location is /opt/quest/mcu and you cannot specify an
alternate path.

Uninstalling the Management Console

The default for the uninstaller is to remove everything. Before you uninstall Management
Console for Unix, if you plan to re-install Management Console for Unix and want to
preserve your data, backup your application database. The application database contains
information about the hosts, settings, users, groups, passwords, and so forth.

By default, the database directory is at: /var/opt/quest/mcu.

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
23

To uninstall the mangement console from Unix

1. Run the following command as root:

/opt/quest/mcu/uninstall

You can optionally use one of the following options with the uninstall command:

l -q option (quiet mode) to automatically accept all the default settings,
including removing the application database and logs.

l -c option (console mode) to prompt you for information interactively.

Using no option starts the installer in a graphical user interface.

2. If in console mode:

a. Confirm that you want to remove Management Console for Unix.

b. Confirm whether you want to remove the application database and application
logs.

This option is useful if you plan to re-install Management Console for Unix and
want to preserve your data. The default for the uninstaller is to remove
everything.

The wizard uninstalls Management Console for Unix

Configure a Primary Policy Server

The first thing you must do is install and configure the host you want to use as your primary
policy server.

Checking the server for installation
readiness

Privilege Manager for Unix comes with a Preflight program that checks to see if your
system meets the install requirements.

To check for installation readiness

1. Log on as the root user.

2. Change to the directory containing the qpm-server package for your specific platform.

For example, on a 64-bit Red HatLinux, run:

cd server/linux-x86_64

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
24

3. To ensure that the pmpreflight command is executable, run:

chmod 755 pmpreflight

4. To verify your primary policy server host meets installation requirements, run:

sh pmpreflight.sh –-server

Running pmpreflight.sh –-server performs these tests:

l Basic Network Conditions:

l Hostname is configured

l Hostname can be resolved

l Reverse lookup returns its own IP

l Privilege Manager for Unix Server Network Requirements:

l Policy server port is available (TCP/IP port 12345)

l Privilege Manager for Unix Prerequisites:

l SSH keyscan is available

5. Resolve any reported issues and rerun pmpreflight until all tests pass.

TCP/IP configuration

Privilege Manager for Unix uses TCP/IP to communicate with networked computers, so
it is essential that you have TCP/IP correctly configured. If you cannot use programs
such as ssh and ping to communicate between your computers, then TCP/IP is not
working properly; consult your system administrator to find out why and make
appropriate changes.

Ensure that your host has a statically assigned IP address and that your host name is not
configured to the loopback IP address 127.0.0.1 in the /etc/hosts file.

Firewalls

When the agent and policy server are on different sides of a firewall, Privilege Manager for
Unix needs a number of ports to be kept open. By default, Privilege Manager for Unix can
use ports in the 600 to 31024 range, but when using a firewall, you may want to limit the
ports that can be used.

You can restrict Privilege Manager for Unix to using a range of ports in the reserved ports
range (600 to 1023) and the non-reserved ports range (1024 to 65535). We recommend
that a minimum of six ports are assigned to Privilege Manager for Unix in the reserved
ports range and twice that number of ports are assigned in the non-reserved ports range.

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
25

Use the setreserveportrange and setnonreserveportrange settings in the
/etc/opt/quest/qpm4u/pm.settings file to open the ports in the required ranges. See PM
settings variables on page 286 for details.

If configuring Privilege Manager for Unix to use NAT (Network Address Translation), you
may need to configure the pmtunneld component. See Configuring firewalls on page 141
for more information about using Privilege Manager for Unix with NAT and restricting
port numbers.

Hosts database

Ensure that each host on your network knows the names and IP addresses of all other
hosts. This information is stored either in the /etc/hosts file on each machine, or in NIS
maps or DNS files on a server. Whichever you use, ensure all host names and IP addresses
are up-to-date and available.

Privilege Manager for Unix components must be able to use forward and reverse lookup of
the host names and IP addresses of other components.

Reserve special user and group names

It is important for you to reserve the following special user and group names for Privilege
Manager for Unix usage:

l Users: questusr, pmpolicy

l Groups: questgrp, pmpolicy, pmlog

The questusr account is a user service account created and used by Management Console
for Unix to manage Privilege Manager for Unix policy and search event logs. It is a non-
privileged account (that is, it does not require root-level permissions) that is used by the
console to gather information about existing policy servers in a read-only fashion. The
mangement console does not use questusr account to make changes to any configuration
files. questgrp is the primary group (gid) for questusr.

The pmpolicy user is created on a primary or secondary server. It is a non-privileged
service account (that is, it does not require root-level permissions) that is used to
synchronize the security policy on policy servers.

The pmlog and pmpolicy groups are used to control access to log files and the security
policy, respectively.

Applications and file availability

Since you can use Privilege Manager for Unix to run applications on remote machines,
ensure that the applications and the files that they access are available from those
machines. Typically, you can use a product such as NFS (supplied with most UNIX

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
26

operating systems) to make users’ home directories and other files available in a
consistent location across all computers.

Policy server daemon hosts

Privilege Manager for Unix requires that you choose a host to act as the policy server. This
machine will run the pmmasterd daemon and must be available to manage requests for the
whole network.

Run the policy server daemon on the most secure and reliable node. To maximize security,
ensure the computer is physically inaccessible and carefully isolated from the network.

The policy server requires that the pmmasterd port (TCP/IP port 12345, by default) is
available, and that PM Agent hosts joined to the policy server are able to communicate with
the policy server on this network port.

You can run multiple policy servers for redundancy and stability. Privilege Manager for
Unix automatically selects an available policy server if more than one is on the network.
For now, choose one machine to run pmmasterd. See pmmasterd on page 433 for more
information.

Local daemon hosts

Each machine that runs requests using Privilege Manager for Unix must run a pmlocald
daemon. Typically you will run pmlocald on all your machines. See pmlocald on page 418
for more information.

Installing the Privilege Manager for Unix
packages

After you make sure your primary policy server host meets the system requirements, you
are ready to install the Privilege Manager for Unix packages.

To install the Privilege Manager for Unix packages

1. From the command line of the host designated as your primary policy server, run the
platform-specific installer. For example, run:

rpm –-install qpm-server-*.rpm

The Solaris server has a filename that starts with QSFTpmsrv.

When you install the qpm-server package, it installs all three Privilege Manager for
Unix components on that host: the Privilege Manager for Unix Policy Server, the PM
Agent, and the Sudo Plugin.

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
27

For details instructions on installing and configuring Safeguard for Sudo, see the One
Identity Safeguard for Sudo Administration Guide.

Modifying PATH environment variable

After you install the primary policy server, you may want to update your PATH to include
the Privilege Manager for Unix commands.

To modify the user's PATH environment variable

1. If you are a Privilege Manager for Unix administrator, add these quest-specific
directories to your PATH environment:

/opt/quest/bin:/opt/quest/sbin

2. If you are a Privilege Manager for Unix user, add this path to your PATH
environment:

/opt/quest/bin

Configuring the primary policy server for
Privilege Manager for Unix

Once you install the Privilege Manager for Unix server packages, the next task is to
configure the primary policy server. The first policy server you setup is the primary
policy server.

To configure the primary policy server for a pmpolicy type

1. From the command line of the primary policy server host, run:

/opt/quest/sbin/pmsrvconfig -m pmpolicy

The pmsrvconfig command supports many command-line options; see pmsrvconfig
on page 458 for details or run pmsrvconfig with the -h option to display the help.

When you run pmsrvconfig with the -i (interactive) option, the configuration
script gathers information from you by asking you a series of questions. During
this interview, you are allowed to either accept a default setting or set an
alternate setting.

Once you have completed the policy server configuration script interview, it
configures the policy server.

2. When you run pmsrvconfig for the first time, it asks you to read and accept the End
User License Agreement (EULA).

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
28

3. Enter a password for the new pmpolicy service account and confirm it. This password
is also called the "Join" password. You will use this password when you add
secondary policy servers or join remote hosts to this policy group.

The configuration process:

l Creates the /etc/opt/quest/qpm4u/pm.settings file, which contains various
parameters and settings

l Installs service entries in the /etc/services file, which contains unique port
numbers for pmmasterd and pmlocald

l Generates a SSH key for log access

l Generates the master policy, a profile-based policy

l Creates the SVN database repository for the master policy

l Checks out a production copy of the master policy

l Performs a syntax check of the master policy

l Starts the Privilege Manager for Unix service (pmserviced). See pmserviced on
page 452 for details.

l Reloads the pmloadcheck configuration. See pmloadcheck on page 417 for
details.

pmpolicy server configuration settings

When you run pmsrvconfig with the -i (interactive) option, the configuration script gathers
information from you by asking you a series of questions. During this interview, you are
allowed to either accept a default setting or set an alternate setting.

The configuration script first asks you to read and accept the End User License Agreement
(EULA). The second question asks if you want to configure the server as a sudo or a
pmpolicy type server; the default is sudo. See Security policy types on page 57 for more
information about policy types. Depending on which type of server you are configuring the
interview asks different questions.

The following table lists the default and alternative configuration settings when configuring
a pmpolicy server. See PM settings variables on page 286 for more information about the
policy server configuration settings.

Configuration
setting

Default Alternate

Configure Privilege Manager for Unix Policy Mode

Configure host as
primary or secondary
policy group server:

primary Enter secondary, then supply the
primary server host name.

Table 4: pmpolicy server configuration settings

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
29

Configuration
setting

Default Alternate

Set Policy Group Name: <FQDN name of
policy server>

Enter Policy Group Name of your
choice.

Policy mode:

See Security policy
types on page 57 for
more information about
policy types.

Sets policymode in
pm.settings. (Policy
"modes" are the same
as policy "types" in the
console.)

sudo Enter pmpolicy

Configure Security Policy

Initialize the security
policy?

YES Enter No

Configure Privilege Manager for Unix Daemon Settings

Policy server command
line options:

Sets pmmasterdopts in
pm.settings.

-ar Enter:

l -a to send job acceptance
messages to syslog.

l -e <logfile> to use the error
log file identified by <logfile>.

l -r to send job rejection
messages to syslog.

l -s to send error messages to
syslog. none to assign no
options.

-a, -r, and -s override syslog
no option; -e <logfile>
overrides the pmmasterdlog
<logfile> option.

Enable remote access
functions?

Sets clients in
pm.settings.

NO

Does not make system
information on this host
available to policy
servers located on other
hosts.

Enter Yes to allow remote policy
servers to connect to this primary
policy server for remote I/O logging,
or to access functions in the policy
file.

Entering Yes allows you to list
remote hosts.

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
30

Configuration
setting

Default Alternate

If Yes, list of remote
hosts allowed to
connect to this policy
server?

NO Enter Yes, then add remote hosts to
list.

Configure host as a PM
Agent?

NO Enter Yes, then configure command
line options.

If Yes, configure
command line options
for the agent daemon?

pmlocaldopts is not set Enter:

l -s to send error messages to
syslog.

l -e <logfile> to use the error
log file identified by <logfile>.

l -m to only accept connections
from the policy server daemon
on the specified host. (Use
Multiple -m options to specify
more than one host.)

l none to assign no options.

These command-line options override
the syslog and pmmasterdlog options
configured in the pm.settings file.

Configure pmlocald on
this host?

NO Enter Yes

Configure policy server
host components to
communicate with
remote hosts through
firewall?

NO Enter Yes

Configure pmtunneld on
this host?

NO Enter Yes

Define host services?

You must add service
entries to either the
/etc/services file or
the NIS services map.

YES

Adds services entries to
the /etc/services file.

Enter No

Communications Settings for Privilege Manager for Unix

Policy server daemon
port number:

12345 Enter a port number for the policy
server to communicate with agents

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
31

Configuration
setting

Default Alternate

Sets masterport in
pm.settings.

and clients.

Specify a range of
reserved port numbers
for this host to connect
to other defined
Privilege Manager for
Unix hosts across a
firewall?

Sets
setreserveportrange in
pm.settings.

NO Enter Yes, then enter a value
between 600 and 1023:

1. Minimum reserved port.
(Default is 600.)

2. Maximum reserved port.
(Default is 1023.)

Specify a range of non-
reserved port numbers
for this host to connect
to other defined
Privilege Manager for
Unix hosts across a
firewall?

Sets
setnonreserveportrange
in pm.settings.

NO Enter Yes, then enter a value
between 1024 and 65535:

1. Minimum non-reserved port.
(Default is 1024.)

2. Maximum non-reserved port.
(Default is 31024.)

Allow short host
names?

Sets shortnames in
pm.settings.

YES Enter No to use fully-qualified host
names instead.

Configure Kerberos on
you

Sets kerberos in
pm.settings.r network?

NO Enter Yes, then enter:

1. Policy server principal name.
(Default is host.)

2. Local principal name. (Default
is host.)

3. Directory for replay cache.
(Default is /var/tmp.)

4. Path for the Kerberos config-
uration files [krbconf setting].
(Default is
/etc/opt/quest/vas/vas.conf.)

5. Full pathname of the Kerberos
keytab file [keytab setting].

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
32

Configuration
setting

Default Alternate

(Default is
/etc/opt/quest/vas/host.keytab
.)

Encryption level:

See Encryption on page
5 for details.

Sets encryption in
pm.settings.

AES Enter one of these encryption
options:

l DES

l TRIPLEDES

l AES

Enable certificates?

Sets certificates in
pm.settings.

NO Enter Yes, then answer:

Generate a certificate on this host?
(Default is NO.)

Enter Yes and specify a passphrase
for the certificate.

Once configuration of this host is
complete, swap and install keys for
each host in your system that need to
communicate with this host. See
Swap and install keys on page 39 for
details.

Activate the failover
timeout?

YES Enter Yes, then assign the failover
timeout in seconds: (Default is 10.)

Failover timeout in
seconds:

Sets failovertimeout in
pm.settings.

10 Enter timeout interval.

Configure Privilege Manager for Unix Logging Settings

Send errors reported
by the policy server
and local daemons to
syslog?

YES Enter No

Policy server log
location:

Sets pmmasterdlog in
pm.settings.

/var/log/pmmasterd.log Enter a location.

Install Privilege Manager for Unix Licenses

XML license file to (use the freeware Enter enter location of the .xml

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
33

Configuration
setting

Default Alternate

apply: product license) license file.

Enter Done when finished.

Enter <password>

This password is also
called the "Join"
password. You will use
this password when you
add secondary policy
servers or join remote
hosts to this policy
group.

You can find an installation log file at: /opt/quest/qpm4u/install/pmsrvconfig_output_
<Date>.log

Verifying the primary policy server configuration

To verify the policy server configuration

1. From the command line of the primary policy server, run:

pmsrvinfo

The pmsrvinfo command displays the current configuration settings. For example:

Policy Server Configuration:

Privilege Manager for Unix version : 6.0.0
Listening port for pmmasterd daemon : 12345
Comms failover method : random
Comms timeout(in seconds) : 10
Policy type in use : pmpolicy
Group ownership of logs : pmlog
Group ownership of policy repository : pmpolicy
Policy server type : primary
Primary policy server for this group : <polsrv>.example.com
Group name for this group : <polsrv>.example.com
Location of the repository
: file:////var/opt/quest/<polsrv>/.<polsrv>/.repository/pmpolicy_repos/trunk
Hosts in the group : <polsrv>.example.com

Note the entries for policy type (pmpolicy) and policy server type (primary). See
Security policy types on page 57 for more information about security policy types.

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
34

Recompile the whatis database

If you are using the whatis database and you chose to install the man pages, you may wish
to recompile the database to allow users to search the documentation using keywords.

Join hosts to policy group

Once you have installed and configured the primary policy server, you are ready to join it
to a policy group. When you join a policy server to a policy group, it enables that host to
validate security privileges against a single common policy file located on the primary
policy server, instead of on the host.

For Unix agents (qpm-agent), you must "join" your policy servers to the policy group using
the pmjoin command.

Joining PM Agent to a Privilege Manager for Unix
policy server

To join a PM Agent to a policy server

1. Log on as the root user and change to the directory containing the qpm-agent package
for your specific platform. For example, on a 64-bit Red HatLinux, enter:

cd agent/linux-x86_64

2. Run:

pmjoin <primary_policy_server>

where <primary_policy_server> is the hostname of the primary policy server.

Running pmjoin performs the configuration of the PM Agent, including modifying the
pm.settings file The pmjoin command supports many command line options. See
pmjoin on page 408 for details or run pmjoin with the -h option to display the help.

l When you run pmjoin with no options, the configuration script automatically
configures the agent with default settings. See Agent configuration settings on
page 36 for details about the default and alternate agent configuration settings.

You can modify the /etc/opt/quest/qpm4u/pm.settings file later, if you want to
change one of the settings. See PM settings variables on page 286 for details.

l When you run pmjoin with the -i (interactive) option, the configuration script
gathers information from you by asking you a series of questions. During this
interview, you are allowed to either accept a default setting or set an alternate
setting.

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
35

Once you have completed the configuration script interview, it configures the
agent and joins it to the policy server.

3. When you run pmjoin for the first time, it asks you to read and accept the End User
License Agreement (EULA).

Once you complete the agent configuration script (by running the pmjoin
command), it:

l Enables the pmlocald service

l Updates the pm.settings file

l Adds the Privilege Manager for Unix shells to the system's list of valid shells
and creates wrappers for the installed (system) shells. The following shells are
provided, based on standard shells:

l pmksh, a Privilege Manager for Unix enabled version of the Korn shell

l pmsh, a Privilege Manager for Unix enabled version of the Bourne shell

l pmcsh, a Privilege Manager for Unix version of c shell

l pmbash, a Privilege Manager for Unix version of the Bourne Again Shell

Each shell provides command-control for every command entered by the user
during a login session. You can configure each command the user enters to
require authorization with the policy server for execution. This includes the
shell built-in commands.

l Updates /etc/shells

l Reloads the pmserviced configuration

l Checks the connection to the policy server host

4. To verify that the agent installation has been successful, as an unprivileged user, run
a command that is permitted by the default Privilege Manager for Unix security
policy, demo.profile. For example, the default security policy allows any user to run
the id command as the root user:

pmrun id

This returns the root user id, not the user’s own id, to show that the command
ran as root.

Agent configuration settings

The following table lists the pmjoin command options, the default settings, and alternatives.
See PM settings variables on page 286 for more information about the policy server
configuration settings.

Option Default Alternate setting

Enable agent daemon none Enter:

Table 5: Agent configuration settings

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
36

Option Default Alternate setting

command line options: l -e <logfile> to use the error
log file identified by <logfile>.

l -m to only accept connections
from the policy server daemon
on the specified host. (Use
multiple -m options to specify
more than one host.)

l -s to send error messages to
syslog. none to assign no
options.

l These command-line
options override the
syslog and pmlocaldlog
options configured in the
pm.settings file.

Enable client daemon? YES Enter No

Configure host
components to commu-
nicate with remote
hosts through firewall?

NO Enter Yes

Enable Privilege
Manager for Unix
shells (pmksh, pmsh,
pmcsh, pmbash)?

YES

That is, you want to use
a Privilege Manager for
Unix shell to control or
log Privilege Manager for
Unix sessions,
regardless of how the
user logs in (telnet, ssh,
rsh, rexec).

Enter No if you do NOT want to add
the Privilege Manager for Unix shells
to the system. That is, you do not
want to use the Privilege Manager for
Unix shells as a login shell.

Add the entries to the
/etc/services file?

YES Enter No

You must add service entries to
either the /etc/services file or the
NIS services map.

Edit list of policy
servers with which this
agent can commu-
nicate?

none Enter valid policy server names to
add to the list.

Indicate if the list is
correct

YES Enter No

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
37

Option Default Alternate setting

Policy Server daemon
port #

12345 Enter a port number

Specify the agent
daemon port number:

12346 Enter a port number for the agent to
communicate with the policy server.

Specify a range of
local port numbers for
this host to connect to
other defined Privilege
Manager for Unix
hosts across a
firewall?

NO Enter Yes, then enter:

1. Minimum reserved port (600-
1024). (Default is 600.)

2. Maximum reserved port (600-
1024). (Default is 1024.)

Allow short host
names?

YES Enter No to use fully qualified host
names instead.

Configure Kerberos on
your network?

NO Enter Yes, then enter:

1. Policy server principal name.
(Default is host.)

2. Local principal name. (Default
is host.)

3. Directory for replay cache.
(Default is /var/tmp.

4. Path for the Kerberos config-
uration files. (Default is
/etc/opt/quest/vas/vas.conf.)

5. Full pathname of the Kerberos
keytab file. (Default is
/etc/opt/quest/vas/host.keytab
.

Specify encryption
level:

See Encryption on
page 5 for details.

AES Enter one of these encryption
options:

l DES

l TRIPLEDES

l AES

Enable certificates? NO Enter Yes, then answer:

Generate a certificate on this host?
(Default is NO.)

Enter Yes and specify a passphrase
for the certificate.

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
38

Option Default Alternate setting

Once configuration of this agent is
complete, swap and install keys for
each host in your system that need to
communicate with this host.

See Swap and install keys on page 39
for details.

Activate the failover
timeout?

YES Enter No, then assign the failover
timeout in seconds.

Default: 10 seconds

Assign the failover
timeout

10 Enter a timeout value in seconds

Select random policy
server

YES Enter No

Send errors reported
by agent to syslog?

YES

Store errors reported
by the agent daemon
in
/var/log/pmlocald.log
?

YES Enter No, then enter a location.

Enter No, then enter a
location.

Swap and install keys

If certificates are enabled in the /etc/opt/quest/qpm4u/pm.settings file of the primary
server, then you must exchange keys (swap certificates) prior to joining a client or
secondary server to the primary server. Optionally, you can run the configuration or join
with the -i option to interactively join and exchange keys.

One Identity recommends that you enable certificates for higher security.

The examples below use the keyfile paths that are created when using interactive
configuration or join if certificates are enabled.

To swap certificate keys

1. Copy Host2's key to Host1. For example:

scp /etc/opt/quest/qpm4u/.qpm4u/.keyfiles/key_localhost \
root@Host1:/etc/opt/quest/qpm4u/.qpm4u/.keyfiles/key_server2

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
39

2. Copy Host1's certificate to Host2. For example:

scp root@host1:/etc/opt/quest/qpm4u/.qpm4u/.keyfiles/key_localhost \
/etc/opt/quest/qpm4u/.qpm4u/.keyfiles/key_host1

3. Install Host1's certificate on Host2. For example:

/opt/quest/sbin/pmkey -i /etc/opt/quest/qpm4u/.qpm4u/.keyfiles/key_host1

4. Log on to Host1 and install Host2's certificate. For example:

/opt/quest/sbin/pmkey -i /etc/opt/quest/qpm4u/.qpm4u/.keyfiles/key_host2

If you use the interactive configure or join, the script will exchange and install keyfiles
automatically.

See Configuring certificates on page 145 for more information.

Configure a secondary policy server

The primary policy server is always the first server configured in the policy server group;
secondary servers are subsequent policy servers set up in the policy server group to help
with load balancing. The "master" copy of the policy is kept on the primary policy server.

All policy servers (primary and secondary) maintain a production copy of the security
policy stored locally. The initial production copy is initialized by means of a checkout from
the repository when you configure the policy server. Following this, the policy servers
automatically retrieve updates as required.

By adding one or more secondary policy servers, the work of validating policy is balanced
across all of the policy servers in the group, and provides failover in the event a policy
server becomes unavailable. Use pmsrvconfig with the –s option to configure the policy
server as a secondary server.

Installing secondary servers

To install the secondary server

1. From the command line of the host designated as your secondary policy server, log
on as the root user.

2. Change to the directory containing the qpm-server package for your specific platform.

For example, on a 64-bit Red Hat Linux, run:

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
40

cd server/linux-x86_64

3. Run the platform-specific installer. For example, run:

rpm –-install qpm-server-*.rpm

The Solaris server has a filename that starts with QSFTpmsrv.

When you install the qpm-server package, it installs all three Privilege Manager for
Unix components on that host:

l Privilege Manager for Unix Policy Server

l PM Agent (which is used by Privilege Manager for Unix)

l Sudo Plugin (which is used by Safeguard for Sudo)

You can only join a PM Agent host to a Privilege Manager for Unix policy server or a
Sudo Plugin host to a sudo policy server. See Security policy types on page 57 for
more information about policy types.

Configuring a secondary server

You use the pmsrvconfig -s <primary_policy_server> command to configure a secondary
server. See pmsrvconfig on page 458 for more information about the pmsrvconfig
command options.

To configure the secondary server

1. From the command line of the secondary server host, run:

pmsrvconfig –s <primary_policy_server>

where <primary_policy_server> is the hostname of your primary policy server.

pmsrvconfig prompts you for the "Join" password from the primary policy server,
exchanges ssh keys for the pmpolicy service user, and updates the new secondary
policy server with a copy of the master (production) policy.

Once you have installed and configured a secondary server, you are ready to join the PM
Agent to it. See Join hosts to policy group on page 35 for details.

Synchronizing policy servers within a group

Privilege Manager for Unix generates log files containing event timestamps based on the
local clock of the authorizing policy server.

To synchronize all policy servers in the policy group, use Network Time Protocol (NTP) or a
similar method of your choice.

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
41

Install PM Agent on a remote host

Once you have installed and configured the primary policy server, you are ready to install a
PM Agent on a remote host.

Checking PM Agent host for installation
readiness

To check a PM Agent host for installation readiness

1. Log on to the remote host system as the root user and navigate to the files you
extracted on the primary policy server.

2. From the root directory, run a readiness check to verify the host meets the
requirements for installing and using the PM Agent, by running:

sh preflight.sh –-pmpolicy –-policyserver <primary_policy_server>

where <primary_policy_server> is the hostname of the primary policy server.

Running preflight.sh –-pmpolicy performs these tests:

l Basic Network Conditions:

l Hostname is configured

l Hostname can be resolved

l Reverse lookup returns it own IP

l Privilege Manager for Unix Client Network Requirements

l PM Agent port is available (TCP/IP port 12346)

l Tunnel port is available (TCP/IP port 12347)

l Policy Server Connectivity

l Hostname of policy server can be resolved

l Can ping the policy server

l Can make a connection to policy server

l Policy server is eligible for a join

l Policy server can make a connection to the PM Agent on port 12346

3. Resolve any reported issues and rerun pmpreflight until all tests pass.

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
42

Installing a PM Agent on a remote host

To install an agent on a remote host

1. Log on as the root user.

2. Change to the directory containing the qpm-agent package for your specific platform.
For example, on a 64-bit Red Hat Linux, enter:

cd agent/linux-x86_64

3. Run the platform-specific installer. For example, on Red Hat Linux run:

rpm --install qpm-agent-*.rpm

Once you install the Privilege Manager for Unix agent package, the next task is to
join the agent to the policy server.

Joining the PM Agent to the primary policy
server

Once you have installed a Privilege Manager for Unix agent on a remote host you are ready
to join it to the primary policy server.

To join a PM Agent to the primary policy server

1. From the command line of the remote host, run:

/opt/quest/sbin/pmjoin <primary_policy_server>.example.com

where <primary_policy_server> is the name of the primary policy server host.

If you are not running the pmjoin command on a policy server, it requires that you
specify the name of a policy server within a policy group.

The pmjoin command supports many command line options. See pmjoin on page 408
for details or run pmjoin with the -h option to display the help.

l When you run pmjoin with no options, the configuration script automatically
configures the agent with default settings. See Agent configuration settings on
page 36 for details about the default and alternate agent configuration settings.

You can modify the /etc/opt/quest/qpm4u/pm.settings file later, if you want to
change one of the settings. See PM settings variables on page 286 for details.

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
43

l When you run pmjoin with the -i (interactive) option, the configuration script
gathers information from you by asking you a series of questions. During this
interview, you are allowed to either accept a default setting or set an
alternate setting.

Once you have completed the configuration script interview, it configures the
agent and joins it to the policy server.

Running pmjoin performs the configuration of the Privilege Manager for Unix agent,
including modifying the pm.settings file and starting up the pmserviced daemon.

2. When you run pmjoin for the first time, it asks you to read and accept the End User
License Agreement (EULA).

Once you complete the agent configuration script (by running the pmjoin
command), it:

l Enables the pmlocald service

l Updates the pm.settings file

l Creates wrappers for the installed shells

l Updates /etc/shells

l Reloads the pmserviced configuration

l Checks the connection to the policy server host

3. To verify that the agent installation has been successful, run

pmclientinfo

This returns displays configuration information about a client host. See pmclientinfo
on page 402 for details.

Verifying PM Agent configuration

To verify the PM Agent configuration

1. From the command line, run:

pmclientinfo

The pmclientinfo command displays the current configuration settings. For example:

[0][root@host1 /]# pmclientinfo
- Joined to a policy group : YES
- Name of policy group : polsrv1.example.com
- Hostname of primary policy server : polsrv1.example.com
- Policy type configured on policy group : pmpolicy

[0][root@host1 /]#

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
44

The secondary server PM Agent will be joined to the secondary server. This is unique
because all other PM Agent hosts must join to the primary server.

Load balancing on the client

Load balancing is handled on each client, using information that is returned from the policy
server each time a session is established.

If a session cannot be established because the policy server is unavailable (or offline) that
policy server is marked as unavailable, and no further pmrun sessions are sent to it until the
next retry interval.

pmloadcheckruns transparently on each host to check the availability and loading of the
policy server. When a policy server is marked as unavailable, pmloadcheck attempts to
connect to it at intervals. If it succeeds, the policy server is marked as available and able
to run Privilege Manager for Unix sessions.

To view the current status of the policy server

l Run the following command:

pmloadcheck [-f]

If the policy server cannot be contacted, the last known information for this host is
reported.

Remove configurations

You can remove the Privilege Manager for Unix Server or PM Agent configurations by using
the –u option with the following commands:

l pmsrvconfig to remove the Privilege Manager for Unix Server configuration

l pmjoin to remove the PM Agent configuration

Take care when you remove the configuration from a policy server, particularly if the
policy server is a primary server with secondary policy servers in the policy group, as
agents joined to the policy group will be affected.

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
45

Uninstalling the Privilege Manager for Unix
software packages

To uninstall the Privilege Manager for Unix packages

1. Log in and open a root shell.

2. Use the package manager for your operating system to remove the packages:

Package Command

RPM # rpm -e qpm-server

DEB # dpkg -r qpm-server

Table 6: Privilege Manager for Unix Server uninstall commands

Package Command

RPM # rpm -e qpm-agent

DEB # dpkg -r qpm-agent

Solaris # pkgrm QSFTpmagt

HP-UX # swremove qpm-agent

AIX # installp -u qpm-agent

Table 7: PM Agent uninstall commands

Privilege Manager for Unix 7.1 Administration Guide

Installation and Configuration
46

5

Upgrade Privilege Manager for Unix

Privilege Manager for Unix supports a direct upgrade installation from version 6.0. The
Privilege Manager for Unix software in this release is provided using platform-specific
installation packages.

If you are currently running Privilege Manager for Unix 6.0, it may be possible to perform a
direct upgrade installation depending on the package management software on your
platform (Note: Direct upgrade installations are not possible with Solaris.pkg packages). If
you perform a direct upgrade installation, your previous configuration details are retained.
Where a direct upgrade is not possible, you must first remove the previously installed
package, and install and configure Privilege Manager for Unix as a new product installation.

Before you upgrade

Because the Privilege Manager for Unix 7.1 original platform installer packages do not
provide an automated rollback script, One Identity highly recommends that you back up
important data such as your license, pm.settings file, policy, and log files before you
attempt to upgrade your existing Privilege Manager for Unix policy servers.

To install Privilege Manager for Unix 7.1, change to the directory where the install package
is located for your platform and run the package installer. See Installing the Privilege
Manager for Unix packages on page 27 for details about how to install the Privilege
Manager for Unix software.

Upgrading Privilege Manager for Unix
packages

Privilege Manager for Unix has the following three packages:

l Server (qpm-server)

l PM Agent (qpm-agent) - Used by Privilege Manager for Unix only

l Sudo Plugin (qpm-plugin) - Used by Safeguard for Sudo only

Privilege Manager for Unix 7.1 Administration Guide

Upgrade Privilege Manager for Unix
47

These packages are mutually exclusive, that is, you can only install one of these packages
on a host at any given time.

For more information on installing/upgrading the Sudo Plugin, see the One Identity
Safeguard for Sudo Administration Guide.

Upgrading the server package

To upgrade the server package

1. Change to the directory containing the qpm-server package for your specific platform.
For example, on a 64-bit Red Hat Linux system, run:

cd server/linux-x86_64

2. Run the platform-specific installer. For example, run:

rpm –-upgrade qpm-server-*.rpm

Upgrading the PM Agent package

To upgrade the PM Agent package

1. Change to the directory containing the qpm-agent package for your specific platform.
For example, on a 64-bit Red Hat Linux 5 system, run:

cd agent/linux-x86_64

2. Run the platform-specific installer. For example, run:

rpm –-upgrade qpm-agent*.rpm

Privilege Manager for Unix 7.1 Administration Guide

Upgrade Privilege Manager for Unix
48

Removing Privilege Manager for Unix
packages

Removing the server package

To remove the server package

1. Run the package uninstall command for your operating system.

For example, to remove the qpm-server package on a 64-bit Red Hat Enterprise Linux
5 system, run:

rpm --erase qpm-server

2. To complete the removal of the qpm-server package, delete:

l pmpolicy service user

l pmpolicy group

l pmlog group

l policy repository directories in /etc/opt/quest/qpm4u/

Removing the PM Agent package

To remove the agent package

1. Run the package uninstall command for your operating system.

For example, to remove the qpm-agent package on a 64-bit Red Hat Enterprise Linux 5
system, run:

rpm --erase qpm-agent

Privilege Manager for Unix 7.1 Administration Guide

Upgrade Privilege Manager for Unix
49

6

System Administration

Privilege Manager for Unix provides command line utilities to help you manage your policy
servers. They can be used to check the status of your policy servers, edit the policy, or to
simply report the information.

Reporting basic policy server
configuration information

To report basic information about the configuration of a policy server

1. From the command line, enter:

pmsrvinfo

This command returns output similar to this:

Policy Server Configuration:

Privilege Manager for Unix version : 7.1.0 (nnn)
Listening port for pmmasterd daemon : 12345
Comms failover method : random
Comms timeout(in seconds) : 10
Policy type in use : pmpolicy
Group ownership of logs : pmlog
Group ownership of policy repository : pmpolicy
Policy server type : primary
Primary policy server for this group : myhost.example.com
Group name for this group : MyPolicyGroup
Location of the repository : file:

////var/opt/quest/qpm4u/.qpm4u/.repository/sudo_
repos/trunk
Hosts in the group : myhost.example.com

Privilege Manager for Unix 7.1 Administration Guide

System Administration
50

Checking the status of the master policy

The "master" copy of the policy file resides in a repository on the primary policy server.
Each primary and secondary policy server maintains a "production" copy of the policy file
or files. Use the pmpolicy utility to verify that the production copy is current with the
master policy.

To compare the production policy file against the master policy on the
primary server

1. From the command line, enter:

pmpolicy masterstatus

If the files are in sync, the Current Revision number will match the Latest Trunk
Revision number. If someone hand-edited the local copy without using pmpolicy
utility commands to commit the changes, "Locally modified" will indicate "YES".

If the production policy is not current with the master policy you can update the
production policy with pmpolicy sync.

Related Topics

pmpolicy

Checking the policy server

When the policy server is not working as expected, use the pmsrvcheck command to
determine the state of the server and its configuration.

To verify the policy server is running

1. From the command line, enter:

pmsrvcheck

This command returns output similar to this:

testing policy server [Pass]

If the policy server is working properly, the output returns 'pass', otherwise it
returns, 'fail'.

Related Topics

pmsrvcheck

Privilege Manager for Unix 7.1 Administration Guide

System Administration
51

Checking policy server status

The primary and secondary policy servers need to communicate with each other. Run the
pmloadcheck command on a policy server host to verify that it can communicate with other
policy servers in the policy group.

To determine if there any issues with policy servers in the policy group

From the Privilege Manager for Unix host command line, enter:

pmloadcheck -r

This command has output similar to this:

[0][root@sol10-x86 /]# pmloadcheck -r
** Reporting current availability of each configured master...

* Host:myhost1.example.com (172.16.1.129) ... [OK]
** Based on this data, the server list is currently ordered as:
1. myhosts.example.com

Related Topics

pmloadcheck

Checking the PM Agent configuration
status

To check the PM Agent configuration status

1. From the command line, enter:

pmclientinfo

This command returns output similar to this:

pmclientinfo
- Joined to a policy group : YES
- Name of policy group : MyPolicyGroup
- Hostname of primary policy server : myhost.example.com
- Policy type configured on policy group : pmpolicy

If the PM Agent has been properly configured, it will say ‘Joined to a Policy Group:
YES’ and give the policy group name and primary policy server’s hostname.

Privilege Manager for Unix 7.1 Administration Guide

System Administration
52

Related Topics

pmclientinfo

Installing licenses

To install a license file

1. Copy the .dlv license file to the policy server.

2. To install the license, run:

/opt/quest/sbin/pmlicense –l <license_file>

This command displays your currently installed license and the details of the new
license to be installed.

3. When it asks, "Would you like to install the new license (Y/N) [Y]?", press Enter,
or type: Y

4. If there are other policy servers configured in your policy server group, it forwards
the license configuration to the other servers.

Related Topics

pmlicense

Displaying license usage

Use the pmlicense command to display how many client licenses are installed on the policy
server on which you run the command.

Use pmlicense without any arguments to show an overall status summary, including the
number of licenses configured and the total licenses in use for each license option.

To display current license status information

1. At the command line, enter:

pmlicense

Privilege Manager for Unix displays the current license information, noting the status
of the license. Your output will be similar to the following:

Privilege Manager for Unix 7.1 Administration Guide

System Administration
53

*** One Identity Privilege Manager for Unix ***
*** QPM4U VERSION 7.1.0 (0xx) ***
*** CHECKING LICENSE ON HOSTNAME:user123.example.com, IP ADDRESS:10.10.178.123

*** SUMMARY OF ALL LICENSES CURRENTLY INSTALLED ***

* License Type PERMANENT
* Commercial/Freeware License COMMERCIAL
* Expiration Date NEVER
* Max QPM4U Client Licenses 10
* Max Sudo Policy Plugin Licenses 0
* Max Sudo Keystroke Plugin Licenses 0
* Authorization Policy Type permitted ALL
* Total QPM4U Client Licenses In Use 4
* Total Sudo Policy Plugins Licenses In Use 0
* Total Sudo Keystroke Plugins Licenses In Use 0

The above example shows that the current license allows for ten QPM4U clients (PM Agent
licenses) and four licenses are currently in use.

Use pmlicense with the –us option to view a summary usage report; use -uf to view the full
usage report.

To show a full usage report including last use dates

1. At the command line, enter:

pmlicense -uf

Your output will be similar to the following:

Detailed Licensed Hosts Report
--
Number | Last Access Time | Hostname
--

| QPM4U | SudoPolicy | SudoKeystroke |
--
1 | 2012/07/01 17:14 | | | admin1.example.com
2 | 2012/07/01 17:14 | | | user101.example.com
3 | 2012/07/01 16:28 | | | user123.example.com
4 | 2012/07/01 17:14 | | | dev023.example.com

The above output shows the full report, including the host names and dates the Unix agents
used the policy server.

The pmlicense command supports many other command-line options.

Related Topics

pmlicense

Privilege Manager for Unix 7.1 Administration Guide

System Administration
54

Listing policy file revisions

After you have made several revisions to your policy file under source control, you can
view the list of policy file versions stored in the repository.

To display all previous version numbers with timestamps and commit logs

1. From the command line, enter:

pmpolicy log

This command returns output similar to this:

** Validate options [OK]
** Check out working copy [OK]
** Retrieve revision details [OK]
version="3",user="pmpolicy",date=2011-05-11,time=19:27:01,msg=""
version="2",user="pmpolicy",date=2011-05-11,time=19:19:47,msg="added tuser"
version="1",user="pmpolicy",date=2011-05-11,time=15:56:12,msg="First import"

Viewing differences between revisions

You can view the changes from revision to revision of a policy file.

To show the differences between version 1 and version 3

1. From the command line, enter:

pmpolicy diff –r:1:2

This command returns output similar to this:

** Validate options [OK]
** Check out working copy (trunk revision) [OK]
** Check differences [OK]
** Report differences between selected revisions [OK]

- Differences were detected between the selected versions
Details:
Index: profiles/helpdesk.profile
===
--- profiles/helpdesk.profile (revision 1)
+++ profiles/helpdesk.profile (revision 2)
@@ -18,6 +18,7 @@
enableRemoteCmds = false; # Should remote cmds be allowed for privilege cmds

Privilege Manager for Unix 7.1 Administration Guide

System Administration
55

?
- ie should it allow cmds if: submithost !=

runhost
#

+shellProfile = "helpdesk";
authUser = "root"; # runuser to use when running the authCommands

Set to 1 of the following:

The output reports lines removed and lines added in a unified diff format.

Backup and recovery

It is important for you to perform systematic backups of the following directories on all
policy servers:

l /var/opt/quest/qpm4u which contains:

l Event Logs

l Keystroke Logs (I/O logs)

l SVN Repository

l SSH Keys

l pmpolicy

l /etc/opt/quest/qpm4u which contains:

l Settings File

l Production Policy

l /opt/quest/qpm4u/.license* which contains:

l License Files

l /opt/quest/qpm4u/license* which contains:

l License Files

l /opt/quest/qpm4u/install which contains:

l Install Logs

l End User License Agreement (EULA)

When recovering from a failure, keep the same hostname and IP address.

Privilege Manager for Unix 7.1 Administration Guide

System Administration
56

7

Managing Security Policy

The Privilege Manager for Unix security system consists of one or more centralized policy
servers and one or more remote clients. A user wishing to run a command secured by
Privilege Manager for Unix makes a request to their client. The request is then propagated
to the policy server which consults a security policy to determine whether to allow or
disallow the command. A typical Privilege Manager for Unix installation has several policy
servers to provide adequate fail-over and load-balancing coverage.

The Privilege Manager for Unix policy servers are capable of recording all the activity
which passes through them. The power to accurately log root, and other account activities
in a safe environment allows you to implement a secure system administration regime with
an indelible audit trail. You always know exactly what is happening in root, as well as who
did it, when it happened, and where.

The data created by the Privilege Manager for Unix policy servers is stored in a log file
called an event log. An entry in the event log is made every time a policy server is used to
run a command.

Security policy types

The security policy lies at the heart of Privilege Manager for Unix. Privilege Manager for
Unix guards access to privileged functions on your systems according to rules specified in
the security policy. It stipulates which users may access which commands with escalated
privileges.

Privilege Manager for Unix supports two security policy types (or modes):

l sudo policy type: Safeguard for Sudo uses a standard sudoers file as its security
policy; that is, the sudo policy is defined by the sudoers file which contains a list of
rules that control the behavior of sudo. The sudo command allows users to get
elevated access to commands even if they do not have root access.

Safeguard uses the sudo policy type by default. The sudo policy type is only
supported with the One Identity Safeguard for Sudo product.

l pmpolicy type: Privilege Manager for Unix uses an advanced security policy which
employs a high-level scripting language to specify access to commands based on a
wide variety of constraints. The Privilege Manager for Unix policy is defined in

Privilege Manager for Unix 7.1 Administration Guide

Managing Security Policy
57

pm.conf, the default policy configuration file which contains statements and
declarations in a language specifically designed to express policies concerning the
use of root and other controlled accounts.

Beginning with release 7.0, both Privilege Manager for Unix and Safeguard for Sudo
support the pmpolicy type.

Management Console for Unix gives you the ability to centrally manage policy located on
the primary policy server. You view and edit both pmpolicy and sudo policy from the
Policy tab on the mangement console.

By default, the policy server configuration tool (pmsrvconfig) uses the sudo policy type on
new installations; if you want to run Privilege Manager for Unix using the pmpolicy type
you must specify that explicitly when using the policy server configuration script.

The pmsrvconfig program is used by both Privilege Manager for Unix and Safeguard for
Sudo. Run pmsrvconfig -m sudo or pmsrvconfig -m pmpolicy to specify the policy type. See
pmsrvconfig on page 458 for more information about the pmsrvconfig command options.

When you join a Sudo Plugin to a policy server, Privilege Manager for Unix adds the
following lines to the current local sudoers file, generally found in /etc/sudoers.

##
WARNING: Sudoers rules are being managed by Safeguard for Sudo
WARNING: Do not edit this file, it is no longer used.
##
Run "/opt/quest/sbin/pmpolicy edit" to edit the actual sudoers rules.
##

When you unjoin the Sudo Plugin, Privilege Manager for Unix removes those lines from the
local sudoers file.

If you configure Privilege Manager for Unix using the pmpolicy type, pmsrvconfig creates a
profile-based policy. This security policy simplifies setup and maintenance through use of
easy-to-manage profile templates. See pmpolicy type policy on page 59 for more
information about profile-based policy.

Use the pmsrvconfig -f <path> command to override the default and import the initial
security policy from the specified location.

Privilege Manager for Unix uses a version control system to manage and maintain the
security policy. This allows auditors and system administrators to track changes that have
been made to the policy and also allows a single policy to be shared and distributed among
several policy servers. The "master" copy of the security policy and all version information
is kept in a repository on the primary policy server.

You manage the security policy using the pmpolicy command and a number of pmpolicy
subcommands. It is important that you only make changes to the policy using the pmpolicy
command. Using pmpolicy ensures that the policy is updated in the repository and across all
policy servers in the policy group. You can run the pmpolicy command from any policy
server in the policy group.

Do not edit the security policy on a policy server directly. Changes made using vi will
eventually be overwritten by the version control system.

Privilege Manager for Unix 7.1 Administration Guide

Managing Security Policy
58

The primary policy server uses a local service account, pmpolicy, to own and manage the
security policy repository. The pmpolicy service account is set when you configure the
primary policy server. At that time you assign the pmpolicy service account a password and
set its home directory to /var/opt/quest/qpm4u/pmpolicy. This password is also called the
"Join" password because you use it when you add secondary policy servers or join remote
hosts to this policy group.

You can manually create the pmpolicy user prior to running the pmsrvconfig script, but if the
user account does not exist, the script creates the user and asks you for a password.

When you run the pmsrvconfig command, it attempts to initialize the security policy by
reusing an existing policy file on this host. If a security policy does not exist, it generates a
default policy.

Specifying security policy type

To configure a Privilege Manager for Unix policy server, you must specify the
pmpolicy type.

To specify the security policy type

1. To specify the pmpolicy type, run:

pmsrvconfig -m pmpolicy

For more information about pmpolicy language, see Privilege Manager for Unix
Administration Guide.

Related Topics

pmsrvconfig

pmpolicy type policy

The Privilege Manager for Unix product uses a specialized policy (pmpolicy type policy),
which allows for a more advanced security policy than is possible with the sudo policy type.
The pmpolicy type uses a powerful scripting language to evaluate whether pmmasterd should
allow requests based on a wide variety of criteria of what, where, when, and how users
should be permitted to perform various privileged account actions.

By default, the main pmpolicy file is located in /etc/opt/quest/qpm4u/policy/pm.conf, but is
not meant to be accessed directly.

pmpolicy type policy code looks like this:

Privilege Manager for Unix 7.1 Administration Guide

Managing Security Policy
59

if (user == "root" || "wheel" in getgroups(user)) {
runuser = requestuser;
accept;

}

The above pmpolicy type code segment accepts requests from root or any user in the
wheel group to run any command as any user.

Modifying complex policies

If your policy consists of several files (the default pmpolicy, for example) or if you want to
add files to or remove files from your policy, use a checkout, change, and commit method
for implementing the changes. The pmpolicy checkout command creates a working copy of
the policy where you can make any necessary changes and then use the pmpolicy commit
command to apply the changes back to the repository. You can use the pmpolicy add and
pmpolicy remove commands to add or delete files to your working copy, respectively.

Checkout, change, and commit example

The following example modifies the default pmpolicy type profile. For example, say
you wanted to create a new backup profile to allow backup operators to run the dump
and restore commands. Use one of the existing profiles, helpdesk.profile, as a
template. First, checkout a working copy to a temporary directory, like this:

pmpolicy checkout -d /tmp
** Checkout to /tmp/policy_pmpolicy
** Create directory [OK]
** Check out working copy [OK]
** Copy files [OK]
** Perform syntax check [OK]

As seen in the command output, the working copy is placed in /tmp/policy_pmpolicy.

Next, change to the profiles directory within the working copy, copy
helpdesk.profile to backup.profile, and run pmpolicy add to record that a file has
been added to the working copy of the policy, as follows:

cd /tmp/policy_pmpolicy/profiles
cp -p helpdesk.profile backup.profile
pmpolicy add -p profiles/backup.profile -d /tmp

** Validate options [OK]
** Add file: profiles/backup.profile

Privilege Manager for Unix 7.1 Administration Guide

Managing Security Policy
60

** Validate arguments [OK]
** Check if directory contains a working copy [OK]

- Directory contains an svn working copy:/tmp/policy_pmpolicy
** Check current status of working copy [OK]
** Check working copy is up to date [OK]
** Check file status [OK]
** Add entry:/tmp/policy_pmpolicy//profiles/backup.profile [OK]

After editing backup.profile to make the necessary changes, use the pmpolicy commit
command to apply the changes to the repository, as follows:

pmpolicy commit -d /tmp -l "added backup.profile"
** Validate options [OK]
** Commit copy in directory:/tmp/policy_pmpolicy
** Check directory [OK]
** Perform syntax check [OK]
** Verify files to commit [OK]
** Commit change from working copy [OK]
** Committed revision 3

Related Topics

pmpolicy type policy

Viewing the security profile changes

To view a summary of the changes you made to your security policy

1. At the command line, run:

pmpolicy log

** Validate options [OK]
** Check out working copy [OK]
** Retrieve revision details [OK]
version="3",user="pmpolicy",date=2012-07-11,time=15:43:30,msg="add
helpdesk.shellprofile "
version="2",user="pmpolicy",date=2012-07-11,time=15:38:21,msg="add
shellProfile to helpdesk "
version="1",user="pmpolicy",date=2012-07-11,time=15:35:19,msg="First import"

Privilege Manager for Unix 7.1 Administration Guide

Managing Security Policy
61

2. To examine the differences between two versions, run:

pmpolicy diff –r1:2

** Validate options [OK]
** Check out working copy (trunk revision) [OK]
** Check differences [OK]
** Report differences between selected revisions [OK]

- Differences were detected between the selected versions
Details:
Index: profiles/helpdesk.profile
===
--- profiles/helpdesk.profile (revision 1)
+++ profiles/helpdesk.profile (revision 2)
@@ -18,6 +18,7 @@
enableRemoteCmds = false; # Should remote cmds be allowed for privilege cmds
?

- ie should it allow cmds if: submithost !=
runhost

#
+shellProfile = "helpdesk";
authUser = "root"; # runuser to use when running the authCommands

Set to 1 of the following:

The output shows the helpdesk.profile file from line 18. The line that was added in the
change between version 1 and version 2 is marked with a preceding “+”.

Privilege Manager for Unix 7.1 Administration Guide

Managing Security Policy
62

8

The Privilege Manager for Unix
Security Policy

Privilege Manager for Unix uses a feature full, high-level scripting language as its security
policy. This is also known as the pmpolicy or legacy type security policy. As an alternative
to learning the policy scripting language and developing a security policy from scratch, the
default configuration installs a "ready to use" profile-based security policy and a number of
pre-defined profiles.

This section examines the profile-based policy and provides specific examples of how to
modify the profiles and add custom code to adapt the policy to your needs.

Default profile-based policy (pmpolicy)

The default configuration for the pmpolicy type is a profile-based security policy, which
consists of several files. The main policy code resides in the global_profile.conf and
profileBasedPolicy.conf files. One Identity recommends that you do not enter customized
code in these files because it will impact the effectiveness and accuracy of the reports
produced by Management Console for Unix. Instead, One Identity recommends that you
use the profiles to affect changes in policy.

Best practice suggestion: Create custom code in profile_customer_policy.conf.

Related Topics

Policy scripting tutorial

Policy profiles

If you configure Privilege Manager for Unix using the pmpolicy type, pmsrvconfig creates a
group of default profile-based policy files that you can customize to define which
commands you want to allow your users to run. This provides a convenient way to
experience the benefits of Privilege Manager for Unix while familiarizing yourself with the

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
63

basics of policy scripting. The default security policy is made up of four sample profiles
(admin, demo, helpdesk, webadmin) and three shell profiles (root, restricted, qpm4u_login).

Profiles

These profiles are enabled by default:

l admin.profile allows its members to run any command as the root user with full
keystroke logging. You can add users to this profile by adding either their user ID or
primary group ID to the pf_authusers or pf_authgroups variables, respectively. By
default, the only member is the root user.

l demo.profile allows its members to run the id command as the root user to
demonstrate how rights are delegated to non-privileged users. By default, all users
are members of this profile.

These profiles are disabled by default:

l helpdesk.profile allows simple helpdesk functions.

l webadmin.profile allows for web server administration commands.

These profiles provide additional examples of how to create and configure profiles. They
are disabled by default to prevent the granting of unwanted access.

Shell profiles

In addition, available shell profiles are also included in the /profiles/shellprofiles
directory that permit the users to run specified shell programs.

These shell profiles are enabled by default:

l root.shellprofile allows the root user unrestricted access to any of the pmshells
(pmksh, pmcsh, pmsh, and pmbash) as the root user.

l qpm4u_login.shellprofile allows any user unrestricted access to any of the
pmshellwrapper wrapped shells that are configured on your system. See Privilege
Manager for Unix shell features on page 117.

This shell profile is disabled by default:

l restricted.shellprofile allows any user to restrict access to any of the pmshells
(pmksh, pmcsh, pmsh, and pmbash) as the root user with access to programs in
/opt/quest/bin and /sbin only.

Profile-based policy files

The profiles and shell profiles allow for easy management of your policy, but the core of
the policy is included in other policy files. The following table briefly describes the files that
are used in the profile-based policy.

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
64

File Description

pm.conf Main policy file.

includes: global_profile.conf, profileBasedPolicy.conf

included by: NONE

Do not put custom code in this policy file.

global_profile.conf Defines default global variables. Also includes extensive
comments documenting the variables.

includes: NONE

included by: pm.conf

Do not put custom code in this policy file; however, you may
change the default settings.

profileBasedPolicy.conf Primary decision making policy file for the profile-based policy.
(Not meant to be edited by customers.)

includes: profile_customer_policy.conf, *.profile,
*.shellprofile

included by: pm.conf

Special hook functions defined in profile_customer_policy.conf
are called from this policy file.

profile_customer_
policy.conf

Custom policy file for customer-defined global variables and
policy code. You can modify special hook functions to run
custom policy code at certain points in the profile evaluation:

l fn_log_and_accept_custom

l fn_custom_profile_init

l pr_custom_profile_reset fn_customer_init

includes: NONE

included by: profileBasedPolicy.conf

You can create custom policies in this file. However, custom
policies may affect the accuracy of the reports generated in
Management Console for Unix. See The Privilege Manager for
Unix Security Policy on page 63.

*.profile in profiles
directory

Profile configuration file for allowing certain commands to be
run by pmrun.

includes: NONE

included by: profileBasedPolicy.conf

Do not put custom code in this policy file.

Table 8: Profile-based policy files

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
65

File Description

*.shellprofile in
profiles directory

Profile configuration file for interactive Privilege Manager for
Unix shells (including wrapped shells).

includes: NONE

included by: profileBasedPolicy.conf

Profiles and shell profiles only contain variable assignments that are used in the policy
decision making.

Profile selection

When evaluating the profile-based policy, the policy server must first determine which
of the profiles match the incoming request. The policy uses the Who, What, Where, and
When criteria specified in the profiles to determine a match. Note that the filename
used for the profile is significant. The policy checks each of the profiles sequentially, in
lexical order until a match is found. Once the a profile is selected, the remaining
profiles are not evaluated.

Profile variables

Privilege Manager for Unix profiles (or roles) define who, what, where, when, and how
users are permitted to perform various privileged account actions using variable values in
the policy configuration profiles.

Management Console for Unix gives you the ability to centrally manage policy within a
graphical user interface. You may view and edit both pmpolicy and sudo policy from the
Policy tab on the mangement console.

The following tables list the predefined variables used in profile-based policy.

Profile variable Value
type

Explanation

General

 pf_profile String The profile name. This variable is set by the
profileBasedPolicy.conf file to be the base filename
of the profile, minus the .profile or .shellprofile
extension.

 pf_profiledescription String A description of the profile.

EXAMPLE:

Table 9: General variables

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
66

Profile variable Value
type

Explanation

pf_profiledescription = "This is a description of
this profile."

 pf_enableprofile Boolean Set to true to enable the profile.

EXAMPLE:

pf_enableprofile = true;

 pf_tracelevel Number Enables tracing/debugging output at different levels:

l 1: show reason for reject

l 2: verbose output

l 3: show debug trace

EXAMPLE:

pf_tracelevel = 1;

 pf_enablekey-
strokelogging

Boolean Set to true to enable keystroke logging.

EXAMPLE:

pf_enablekeystrokelogging = true;

 pf_iologdir String The directory in which to store I/O logs. A unique file
is created in this directory for each keystroke logging
session.

EXAMPLE:

pf_iologdir = "/var/opt/quest/qpm4u/iolog/";

 pf_logpasswords Boolean Set to false to avoid writing passwords to the
keystroke log. The password detection is determined
by the pf_passprompts list.

EXAMPLE:

pf_logpasswords = false;

 pf_passprompts List A list of strings interpreted as password prompts in
stdout.

EXAMPLE:

pf_passprompts = {"[pP]assword[:]*"};

Authentication

 pf_enableau-
thentication

Boolean Set to true to enable PAM authentication. By default,
the submit user is authenticated on the master host
using the sshd service.

EXAMPLE:

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
67

Profile variable Value
type

Explanation

pf_enableauthentication = true;

 pf_authen-
ticateonclient

Boolean Set to true to require authentication on the client. If
set to false, users are authenticated on the server,
not on the client.

EXAMPLE:

pf_authenticateonclient = true;

Authentication is only required if pf_
enableauthentication = true.

 pf_pamservice String Identifies the PAM service to use when authenticating
to PAM.

EXAMPLE:

pf_pamservice = "sshd";

 pf_pam_prompt String Configures the prompt to use with PAM.

EXAMPLE:

pf_pam_prompt = "Password: ";

pf_allowscp Set to true to allow scp and non-interactive SSH
commands when authentication for the shell is
enabled.

Only applies to pmksh, pmcsh, pmsh, pmbash, and
pmshellwrapper.

EXAMPLE:

pf_allowscp = false;

Profile variable Value
type

Explanation

Commands

 pf_authpaths List Specifies the paths from which commands are
permitted to run. Empty lists are ignored. If not empty,
this variable is passed to the agent for authorization at
the point where the command is about to be run; the
agent will then reject a command unless it is run from
one of these paths.

For a shell profile, this restriction is applied to the shell
program itself, and to commands run from within the
shell.

Table 10: What settings

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
68

Profile variable Value
type

Explanation

EXAMPLE:

pf_authpaths = {

 # no path restrictions

};

 pf_authcmds List Commands authorized to run; commands not in the list
are rejected.

Considerations:

l If you specify a fully qualified path in pf_
authcmds, you must specify the fully qualified path
in the requested command.

l glob is used to match the path, so be careful
when using wild cards in the path.

l You can precede an entry with an optional
NOEXEC flag to ensure that the run command is
blocked from forking any child processes. Put the
flag at the beginning of the string and enclose the
flag with '[]'.

EXAMPLE:

pf_authcmds = {

"/usr/bin/id *"

};

 pf_enablere-
motecmds

Boolean Set to true to allow commands to run on a different
host when running pmrun with the -h option .

EXAMPLE:

pf_enableremotecmds = false;

Shell commands

 pf_shellcom-
mandsaccept

List Specifies the list of commands accepted by pmmasterd
when run from within the shell. pmmasterd authorizes
listed commands and they produce an event in the audit
log. If pf_shellcommandsaccept is not empty, any
matching command is accepted; all others are rejected.

Considerations:

l Only configure pf_shellcommandsreject or pf_
shellcommandsaccept.

l If both lists are empty, then all commands are

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
69

Profile variable Value
type

Explanation

accepted.

l Only applies to pmksh, pmcsh, pmsh, and pmbash.

EXAMPLE:

pf_shellcommandsaccept = {

};

 pf_shellcom-
mandsreject

List Specifies the list of commands rejected by pmmasterd
when run from within the shell. pmmasterd authorizes
listed commands and they produce an event in the audit
log. If pf_shellcommandsreject is not empty, any
matching command is be rejected; all others are
accepted.

Considerations:

l Only configure pf_shellcommandsreject or pf_
shellcommandsaccept.

l If both lists are empty, then all commands are
accepted.

l Only applies to pmksh, pmcsh, pmsh, and pmbash.

EXAMPLE:

pf_shellcommandsreject = {

};

 pf_checkbuiltins Boolean Set to true to use shell builtins just like commands.

This only applies to pmksh, pmcsh, and pmsh.

EXAMPLE:

pf_checkbuiltins = true;

 pf_shellreject String Message to display when a user attempts to run a
forbidden command.

This only applies to pmksh, pmcsh, pmsh, and pmbash.

EXAMPLE:

pf_shellreject = "You are not permitted to run this
command";

Pre-authorized Commands

 pf_shellallow List Defines the list of pre-authorized commands allowed by
the shell without further authorization by the master.
The shell interprets each item in this list as a regular

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
70

Profile variable Value
type

Explanation

expression. Listed commands do not result in an audit
event in the event log.

This only applies to pmksh, pmcsh, pmsh, and pmbash.

EXAMPLE:

pf_shellallow = {

"(^|/)(exit|pwd|echo)$",

};

 pf_shellallowpipe List Defines the list of pre-authorized commands allowed by
the shell without further authorization by the master,
but only in the case where std input is from a pipe (for
example, ls | more). The shell interprets each item in
this list as a regular expression. Listed commands do
not result in an audit event in the eventlog.

This only applies to pmksh, pmcsh, pmsh, and pmbash.

EXAMPLE:

pf_shellallowpipe = {

"(^|/)(awk|more|grep)$",

 # allow pipe to innocuous common commands

};

pf_shell_forbid List Defines the list of commands rejected by the shell
without further authorization by the master. The shell
interprets each item in this list as a regular expression.
Listed commands do not result in an audit event in the
event log.

This only applies to pmksh, pmcsh, pmsh, and pmbash.

EXAMPLE:

pf_shellforbid = {

"(^|/)(passwd|kill|shutdown)$",

 # forbid sensitive commands

"(^|/)(a|b|c|k|z)?sh$",

 # forbid normal shells

"(^|/)(bash|tcsh)$",

 # forbid normal shells

"(^|/)nc$",

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
71

Profile variable Value
type

Explanation

 # forbid cmds that allow remote execution

};

Profile Variable Value
Type

Explanation

Run Hosts

 pf_authrunhosts List Hosts where commands can run. If not empty, you can
submit commands from any host in this list.

EXAMPLES:

pf_authsubmithosts = {"host1"};

 # allow cmds from host host1 only

pf_authsubmithosts = {"*.one.two"};

 # allow cmds from *.one.two only

pf_authsubmithosts = {ALL};

 # allow cmds from all hosts

SAFEHOSTS = {"*.one.two"};

pf_authsubmithosts = {SAFEHOSTS};

 # allow cmds from *.one.two only

 pf_authrun-
hostsad

List Active Directory host groups where commands can run. If
not empty, you can submit commands from any host in this
list. You can specify an Active Directory domain name as
part of the arguments; for example, as <domain>/<name>,
<domain>\\<name>, or <name>. If a domain is not specified,
then it uses the default joined domain.

These lists do not support wild cards.

EXAMPLES:

pf_authrunhostsad = { "TESTDOM1/testhosts1",
"TESTDOM2/dbhosts1"};

 # match any member of either AD group

pf_authrunhostsad = { "testhosts1" };

 # match members in the specified AD group in the
default joined domain

pf_authrunhostsad = {

};

Table 11: Where settings

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
72

Profile Variable Value
Type

Explanation

 # match no AD groups

Submit Hosts

 pf_authsub-
mithosts

List Hosts where commands can be submitted. If not empty, you
can submit commands from any host in this list.

EXAMPLES:

pf_authsubmithosts = {"host1"};

 # allow cmds from host host1 only

pf_authsubmithosts = {"*.one.two"};

 # allow cmds from *.one.two only

pf_authsubmithosts = {ALL};

 # allow cmds from all hosts

SAFEHOSTS = {"*.one.two"};

pf_authsubmithosts = {SAFEHOSTS};

 # allow cmds from *.one.two only

 pf_authsub-
mithostsad

List Active Directory host groups where commands can be
submitted. If not empty, you can submit commands from
any host in this list. You can specify a domain name as part
of the arguments; for example, as <domain>/<name>,
<domain>\\<name>, or <name>. If a domain is not specified,
then it uses the default joined domain.

These lists do not support wild cards.

EXAMPLES:

pf_authsubmithostsad = { "TESTDOM1/testhosts1",
"TESTDOM2/dbhosts1"};

 # match any member of either AD group

pf_authsubmithostsad = { "testhosts1" };

 # match members in the specified AD group

 # in the default joined domain

pf_authsubmithostsad = {

};

 # match no AD groups

Forbidden Run Hosts

 pf_forbidrunhosts List Hosts where members are forbidden to run commands. If

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
73

Profile Variable Value
Type

Explanation

not empty, you can submit commands from any host NOT in
this list.

EXAMPLES:

pf_forbidrunhosts = {"fred"}; i

 # allow cmds to all hosts except fred

pf_forbidrunhosts = {"*.one.two"};

 # allow cmds to all hosts except *.one.two

BADHOSTS = {"*.one.two"};

pf_forbidrunhosts = {BADHOSTS};

 # allow cmds to all hosts except *.one.two

 pf_forbidrun-
hostsad

List Active Directory host groups where members are forbidden
to run commands. If not empty, you can submit commands
from any host NOT in this list. You can specify a domain
name as part of the arguments; for example, as
<domain>/<name>, <domain>\\<name>, or <name>. If a domain is
not specified, then it uses the default joined domain.

These lists do not support wild cards.

EXAMPLES:

pf_forbidrunhostsad = { "TESTDOM1/testhosts1",
"TESTDOM2/dbhosts1"};

 # match any member of either AD group

pf_forbidrunhostsad = { "testhosts1" };

 # match members in the specified AD group in the
default joined domain

pf_forbidrunhostsad = { };

 # match no AD groups

Forbidden Submit Hosts

 pf_forbid-
submithosts

List Hosts where members are forbidden to submit commands.
If not empty, you can submit commands from any host NOT
in this list.

EXAMPLES:

pf_forbidsubmithosts = {"host1"};

 # allow cmds from all hosts except host1

pf_forbidsubmithosts = {"*.one.two"};

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
74

Profile Variable Value
Type

Explanation

 # allow cmds from all hosts except *.one.two

BADHOSTS = {"*.one.two"};

pf_forbidsubmithosts = {BADHOSTS};

 # allow cmds from all hosts except *.one.two

pf_
forbidrunhostsad

List Active Directory host groups where members are forbidden
to submit commands. If not empty, you can submit
commands from any host NOT in this list. You can specify a
domain name as part of the arguments; for example, as
<domain>/<name>, <domain>\\<name>, or <name>. If a domain is
not specified, then it uses the default joined domain.

These lists do not support wild cards.

EXAMPLES:

pf_forbidrunhostsad = { "TESTDOM1/testhosts1",
"TESTDOM2/dbhosts1"};

 # match any member of either AD group

pf_forbidrunhostsad = { "testhosts1" };

 # match members in the specified AD group in the
default joined domain

pf_forbidrunhostsad = { };

 # match no AD groups

If a member (a user for the group lists, or a host for the hosts lists) is found in both forbid
and auth lists, the request is rejected; the forbid list takes precedence.

Profile variable Value
type

Explanation

Users

 pf_authusers List Identifies the list of users that match this profile.

EXAMPLES:

pf_authusers = {

};

 # No users assigned to this profile

pf_authusers = { "jsmith", "dbrown"};

 # match either user

Table 12: Who settings

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
75

Profile variable Value
type

Explanation

pf_authusers = { ALL};

 # match all users

DBUSERS={"TESTDOM1/fred", "TESTDOM2/john"};

 # allow cmds from /bin,/usr/bin,/tmp

pf_authusers = { "jsmith*", DBUSERS};

 # match fred, john & jsmith*

 pf_authuser String Identifies the runas user.

EXAMPLE:

pf_authuser = user;

The runas user can be:

l Any valid user name on the agent, such as:

pf_authuser = "fred";

 # run command as fred

l A user variable or empty string ("") to run the
command as the submit user; that is, set
runuser=user (the default)

pf_authuser = user;

 # run command as submit user

pf_authuser = "";

 # run command as submit user

l The requestuser variable to run the command as the
user selected using the pmrun -u user option.

pf_authuser = requestuser;

 # run command as the requested user

Groups

 pf_authgroups List You can assign users to this profile by group membership
on the client or server host, or by assigning individual
user names. By default the group membership is verified
against the submit user's group information passed on
from the client host by pmrun. You can configure it to verify
the group membership on the master host instead, using
the pf_useservergroupinfo variable.

EXAMPLES:

pf_authgroups = { "admins", "dbas"};

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
76

Profile variable Value
type

Explanation

 # match any member of either group

pf_authgroups = { ALL};

 # match all groups

DBGROUPS = {"db*"};

pf_authgroups = { DBGROUPS, "root"};

 # match all db* groups and root

 pf_authgroup String If accepted, the request runs with the specified group as
the rungroup.

EXAMPLE:

pf_authgroup = use_rungroup;

The rungroup can be:

l Any valid group name on the agent, such as:

pf_authgroup ="fred";

 # run command as group fred

l A group variable or empty string ("") to run the
command as the submit group; that is, set
rungroup=group (the default)

pf_authgroup = group;

 # run command as submit group

pf_authgroup = "";

 # run command as submit group

l The use_rungroup constant to defer setting the
rungroup to pmlocald; pmlocald will obtain the
runuser's primary group and use that.

pf_authgroup = use_rungroup;

 # run command as runuser's group on the agent

 pf_useserver-
groupinfo

Boolean Set to true to check that the user is a member of one of
the pf_authgroups on the master host, otherwise check the
user's group membership on the client host.

EXAMPLE:

pf_useservergroupinfo = false;

AD Groups

pf_authgroupsad List Identifies the list of non Unix-enabled AD groups that

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
77

Profile variable Value
type

Explanation

match this profile. Use the format: <domain>/<name,
<domain>\\<name>, or <name>. If you do not specify the
domain, it uses the default joined domain.

This list does not support wild cards.

EXAMPLES:

pf_authgroupsad = { "TESTDOM1/testgroup1",
"TESTDOM2/dbgroup1"};

 # match any member of either AD group

pf_authgroupsad = { };

 # match no AD groups

Profile Variable Value
Type

Explanation

Time Restrictions

 pf_enable-
timerestrictions

Boolean Set to true to enforce the time restrictions in the
restrictionHours list.

EXAMPLE:

pf_enabletimerestrictions = true;

 pf_restrictionhours List Start and End time of allowed time period. Set to "*" or
empty string to disable time restrictions. Use 24-hour
format, with no leading zero.

EXAMPLES:

pf_restrictionhours = {"8:00", "18:00};

 # 8am - 8pm

pf_restrictionhours = {"22:00", "07:00};

 # 10pm - 7am

pf_restrictionhours = {"", ""};

 # no restrictions

pf_restrictionhours = {"*", "*"};

 # no restrictions

 pf_restrictiondates List Configures the actual date restrictions applied if pf_
enabletimerestrictions is set to true. Specify Start
and End dates using yyyy/mm/dd format.

EXAMPLES:

Table 13: When settings

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
78

Profile Variable Value
Type

Explanation

pf_restrictiondates = {"2012/01/01", ""};

 # no expiry

pf_restrictiondates = {"", "2012/01/01"};

 # no start date

pf_restrictiondates = {"2012/01/01", "2012/12/31"};

 # check start and end date

pf_restrictiondates = {"", ""};

 # no restrictions

pf_restrictiondates = {"*", "*"};

 # no restrictions

pf_restrictiondow List Configures the day of the week restrictions applied if
pf_enabletimerestrictions is set to true. Specify Days
in any order using the lower case 3-letter abbreviation
{"fri","sat","sun","mon","tue","wed","thu"};

EXAMPLES:

pf_restrictiondow = {"mon","tue","wed","thu","fri"};

 # weekdays only

pf_restrictiondow =
{"fri","sat","sun","mon","tue","wed","thu"};

 # all days

pf_restrictiondow = {};

 # no restrictions

Profile
variable

Value
type

Explanation

Shell Settings

 pf_allow-
shells

List List of allowed shells. Do not specify full paths. This list is not
compared with the runcommand, instead it is compared with the
special pmshell_prog variable set by a Privilege Manager for
Unix shell.

Only applies to pmksh, pmcsh, pmsh, pmbash, and pmshellwrapper.

EXAMPLE:

pf_allowshells ={"pmksh", "pmcsh", "pmsh", "pmshellwrapper"};

 pf_restric- Boolean Set to true to run the shell in restricted mode.

Table 14: How settings

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
79

Profile
variable

Value
type

Explanation

ted This means:

l user cannot change directory

l user cannot change PATH, ENV, SHELL

l user can only run programs in PATH

l no absolute/relative paths allowed

l user cannot use io redirection with the '>' or '<'
characters

Only applies to pmksh, pmcsh, pmsh, and pmbash.

EXAMPLE:

pf_restricted = true;

 pf_
shellreadonly

List List of environment variables to treat as read-only. In restricted
mode, the PATH, ENV, and SHELL variables are always read-
only.

Only applies to pmksh, pmcsh, pmsh, and pmbash.

EXAMPLE:

pf_shellreadonly = {};

 pf_shellcwd Sting Defines the initial directory where the shell program will be run.
The default is to use the runuser's home directory. This is
particularly relevant for shells running in restricted mode,
where the user cannot change the directory.

This only applies to pmksh, pmcsh, pmsh, and pmbash.

EXAMPLE:

pf_shellcwd = use_rundir;

pf_shellpath String Defines the PATH that will be applied for the shell session. The
default is to set standard paths, and add the runuser's home
directory, and the current directory. This is particularly relevant
for shells running in restricted mode, where the user cannot
change the PATH, and can only run commands relative to the
configured PATH.

This only applies to pmksh, pmcsh, pmsh, and pmbash.

EXAMPLE:

pf_shellpath = {

"/usr/bin",

"/bin",

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
80

Profile
variable

Value
type

Explanation

use_rundir,

".",

};

Exploring profiles

To understand what happens when the Privilege Manager for Unix policy server receives a
request, let's assume the default profile-based policy (pmpolicy) has been configured and
user jbloggs issued a pmrun id command from host qpmhost01.

A pmmasterd process on the policy server receives the request, and pmrun sends it details
about the request which are recorded as event variables (for example, user="jbloggs",
command="id", submithost="qpmhost01", runhost="qpmhost01", date="2013/01/01",
time="15:00:00").

With instructions from the code in profileBasedPolicy.conf, pmmasterd looks through each
of the profiles until it finds a match between the profile variables (such as, pf_authusers)
and the corresponding variables from the request (such as, user).

Note that pmshell and pmshellwrapper requests (such as, pmksh or pmshellwrapper_bash), the
code directs pmmasterd to look through the shell profiles instead.

The default profile-based policy (pmpolicy) comes with four profiles: admin, demo, helpdesk,
and webadmin.

l The admin profile is skipped because its pf_authusers lists only includes the root user.

l The helpdesk and webadmin profiles are disabled because their pf_enableprofile
variables are set to false.

l This only leaves the demo profile, which is listed below.

##
Privilege Manager for Unix Profile: demo
#
This profile permits any user from any host to submit the "id" and "whoami"
commands
to be executed as the root user on the local host.
##

pf_profiledescription= "Permit root access to id and whoami for demo purposes";

Enable profile
pf_enableprofile= true;

Enable Keystroke Logging

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
81

pf_enablekeystrokelogging= true;

No authentication required
pf_enableauthentication= false;

Apply time restrictions
pf_enabletimerestrictions= true;

Only permit execution between 7am and 7pm
pf_restrictionhours= {"7:00","19:00"};

No date restrictions
pf_restrictiondates= {"",""};

Do not permit user to run remotely using pmrun -h
pf_enableremotecmds= false;

Run these commands as root user
pf_authuser= "root";

Run these commands as root's primary group on runhost
pf_authgroup= use_rungroup;

##
Profile Membership
##
Allow all users to run these commands
pf_authusers={
ALL
};

allow session to be requested from any host
pf_authsubmithosts={
ALL,
};

allow session to run on any host
pf_authrunhosts={
ALL,
};

Only permit commands if run from /usr/bin or /bin
pf_authpaths={
"/usr/bin",
"/bin",
};

permit id with any number of args (or none)

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
82

permit whoami, only if run with no args
pf_authcmds={
"id **",
"whoami",
};

The demo profile is selected because the who, what, where, and when criteria match
the request.

Criteria Demo Profile Variables Request Event
Variables

Match?

Who pf_authusers={ALL}; user="jbloggs" Yes

What pf_authcmds= {"id **", "whoami"}; pf_
authpaths= {"/usr/bin","/bin");

command="id"

(n/a, path validated by
pmlocald)

Yes

Where pf_authsubmithosts={ALL}; pf_
autrunhosts={ALL};

submithost="qpmhost01"
runhost="qpmhost01"

Yes

Yes

Table 15: Matching the request to the demo profile

The policy is not able to validate the command path against pf_authpaths, since an
absolute path to the command was not provided with the request. Because of this,
pmmasterd accepts the request without checking the path, and leaves pf_authpaths to be
validated by the pmlocald.

Once the policy selects a profile, other profile variables may affect how requests are
processed. For example, pf_enableauthentication specifies whether password
authentication is required.

If the root user issued the same pmrun request, the admin profile would have been
selected. Even though both the admin and demo profiles match the request, the admin profile
matches first.

Customizing the default profile-based
policy (pmpolicy)

The default profile-based policy (pmpolicy) includes a profile_customer_policy.conf file,
which you may edit to include customized policy code. This policy file defines the following
stub functions and procedures that allow your custom code to run at specific points during
the policy evaluation.

fn_customer_init()

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
83

This function is called once per policy evaluation, at the start of the policy's main
body (located near the end of the profileBasedPolicy.conf file), just after the policy
includes the profile_customer_policy.conf file.

fn_custom_profile_init()

This function is called after matching the user or group to a profile (or shell profile)
but before checking anything else. You can find the function in procedure pr_
processProfile() in the profileBasedPolicy.conf file.

This function can cause the current profile selection to fail by returning a false value.

pr_custom_profile_reset()

Use this procedure to reset custom profile variables added to the profile_customer_
policy.conf file. This procedure is called when the profile match fails.

fn_log_and_accept_custom()

This function is called just before the request is accepted, after the request has been
successfully matched to a profile. The function is called from the fn_log_and_accept()
function in the profileBaseProfile.conf file.

Customization example - pf_forbidusers list

This example demonstrates how to create a new profile variable, pf_forbidusers, that you
can use in any profile or shell profile. The customization will cause the profile selection to
fail when the user is in the pf_forbidusers list, even if the user matches pf_authusers. This
would allow you to blacklist specific users from any profile or shell profile.

The following is an updated profile_customer_policy.conf file indicating the
modifications in bold.

##
One Identity Privilege Manager for Unix Profile Policy V600 (XXX)
One Identity 2013
#
Sample Default Policy Generated for QPM4U
#
This policy is included by file: profileBasedPolicy.conf
#
This allows customization at certain points while reading profiles. The
following functions are provided:
- fn_log_and_accept_custom
- fn_custom_profile_init
- pr_custom_profile_reset
- fn_customer_init
##
custom profile variables
pf_forbidusers={};

###

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
84

FUNCTION: fn_log_and_accept_custom
#
This function is called by pr_log_and_accept to do any
customer-specific actions required, just before accepting the request.
#
###
function fn_log_and_accept_custom()
{

return true;
}

###
FUNCTION: fn_custom_profile_init
Do any custom config required for a profile.
This is called after matching user/group to a profile,
but before checking anything else.
###
function fn_custom_profile_init()

{
if (user in pf_forbidusers)

return false;
return true;

}

##
PROCEDURE: pr_custom_profile_reset
Reset any custom variables after processing a profile
###
procedure pr_custom_profile_reset()
{

#reset these for each profile read
pf_forbidusers={};
return;

}

###
FUNCTION: fn_customer_init
Do any custom config required for the policy
This is called before processing any profiles.
###
function fn_customer_init()
{

return true;
}

The initial definition of the variable (pf_forbidusers={};) is near the top of the file. In order
to be globally accessible, the variable must be defined outside of any function or procedure
call. The same statement is also in the pr_custom_profile_reset() procedure so that the

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
85

variable is reset before a new profile (or shell profile) is read. Finally, some code was
added to fn_custom_profile_init() to return false if the user is listed in the variable.

If you add the following to the demo profile, user jbloggs would no longer be able to
successfully run pmrun id using that profile:

pf_forbidusers={"jbloggs"};

Policy scripting tutorial

This section introduces you to the basics of policy scripting through a series of seven semi-
interactive lessons. However, before you begin, please note: One Identity assumes you:

l have Privilege Manager for Unix installed successfully

l are running Privilege Manager for Unix with the pmpolicy type

The first seven lessons introduce you to some of the simpler constructs and capabilities of
Privilege Manager for Unix's policies. Each lesson is designed to allow you to run the policy
files on your own test system, with minimal changes, enabling you to learn the basics of
policy scripting quickly.

Following the seven basic lessons are three advanced lessons designed to extend your
knowledge and understanding of creating policies.

Before you start the lessons

1. Install the example policy file.

2. Create test users

3. Set Lesson number variable

Install the example policy file

Before you start the lessons, you must install the example policy file. This procedure
instructs you to create a temporary directory and then use the pmpolicy command with a
checkout sub-command to checkout the current policy into the temporary directory you
just created.

To install the main example policy file

1. Create a temporary directory:

mkdir /tmp/policy

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
86

2. Checkout the current policy:

/opt/quest/sbin/pmpolicy checkout -d /tmp/policy

** Validate options [OK]
** Checkout to /tmp/policy/policy_pmpolicy
** Create directory [OK]
** Check out working copy [OK]
** Copy files [OK]
** Perform syntax check [OK]

3. Change to the temporary directory:

cd /tmp/policy/policy_pmpolicy

4. Run the pmpolicy masterstatus command and note the current revision number.

#pmpolicy masterstatus
** Validate options [OK]
** Report details of production copy
** Check out working copy (HEAD revision) [OK]
** Check if directory contains a working copy [OK]

- Directory contains an svn working
copy:/var/opt/quest/qpm4u/pmpolicy/.scratch/._29076
** Check current status of working copy [OK]
** Report details of production copy [OK]

- Production Policy File :
/etc/opt/quest/qpm4u/policy/pm.conf

- Checked out at : 2012-11-30 16:23
- Current Revision : 1
- Latest Trunk Revision : 1
- Locally modified : NO

5. Copy the main example policy into place:

cp /opt/quest/qpm4u/examples/pm.conf pm.conf
cp: overwrite `pm.conf'? y

Policy file

This is the main policy file that Privilege Manager for Unix uses to drive through the
lessons.

The other sample policy files for the lessons are also in the examples directory:

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
87

/opt/quest/qpm4u/examples/example1.conf
/opt/quest/qpm4u/examples/example2.conf
/opt/quest/qpm4u/examples/example3.conf
/opt/quest/qpm4u/examples/example4.conf
/opt/quest/qpm4u/examples/example5.conf
/opt/quest/qpm4u/examples/example6.conf
/opt/quest/qpm4u/examples/example7.conf
/opt/quest/qpm4u/examples/example8.conf
/opt/quest/qpm4u/examples/example9.conf
/opt/quest/qpm4u/examples/example10.conf

6. Use the commit sub-command to start using the policy:

pmpolicy commit -d /tmp/policy

** Validate options [OK]
** Commit copy in directory:/tmp/policy/policy_pmpolicy
** Check directory [OK]
** Perform syntax check [OK]
** Verify files to commit [OK]
Please enter the commit log message: example pm.conf
** Commit change form working copy [OK]
** Committed revision 2

7. When you are finished with the examples, revert the original main policy file,
as follows:

pmpolicy revert -r 1
** Validate options [OK]
** Revert to revision:1
** Check out working copy (trunk revision) [OK]
** Check out working copy (revision 1) [OK]
** Check required revision [OK]
** Get file list for trunk [OK]
** Get file list for selected revision [OK]
** Copy file:pm.conf [OK]
** Perform syntax check [OK]
** Verify files to commit [OK]
Please enter the commit log message: revert to original
** Commit change from working copy [OK]
** Committed revision 3

See Main policy configuration file on page 101 to see the example policy file used in
these lessons.

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
88

Create test users

For each lesson in this hands-on tutorial, you are required to log on as root and then switch
to a test user. Then, at the conclusion of each lesson, switch back to root to get ready to
start the next lesson.

To work through these lessons, you need to create users called demo, dan, and robyn on
your test system, as the policy file is based around these default users.

To create the test users

1. Log in to your test system as the root user.

2. Create the demo, dan, and robyn test users to use during the lessons.

Set Lesson number variable

Lessons 1-10 are controlled by an environment variable called LESSON. Set this to a
number in the range 1 through 6, using the following command:

LESSON=1; export LESSON

The main policy file, pm.conf, reads the LESSON and LESSON_USER environment variables
and assigns their values to the PMLESSON and PMLESSON_USER policy variables,
respectively.

The following example instructs you to run a fictitious command, fred, under Lesson 1.

You use the pmrun command to submit commands to Privilege Manager for Unix. Try
entering fred using pmrun.

To enter a fictitious command

1. At the command line, run:

su demo
$ pmrun fred

Lesson 1 is selected
-------------LESSON 1 DESCRIPTION---------------------------
Policy file /opt/quest/pm4u/examples/linux-intel/example1.conf
--
This basic lesson uses a policy allowing users dan and demo
the rights to run any command as root.

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
89

For example, to test this, enter the command pmrun whoami
which will return the value root as the logged in user.

fred
3201.063 Exec of fred failed: Command not found

As you can see, the policy informs you which lesson is selected and also provides the path
to the associated policy file which contains this lesson fragment.

The policy files are reproduced in Sample policy files on page 101 for your reference, but
you are encouraged to look at the digital copies of these files and experiment with the
constructs that they contain once you have completed the lessons.

Introductory lessons

The first seven lesson introduce you to some of the simpler constructs and capabilities of
Privilege Manager for Unix's policies. Each lesson builds upon the precepts of the last
lesson. By the end of the seventh lesson you will have sufficient knowledge to start building
your own policies.

These are the introductory lessons:

l Lesson 1: Basic policy

l Lesson 2: Conditional privilege

l Lesson 3: Specific commands

l Lesson 4: Policy optimization with list variables

l Lesson 5: Keystroke logging

l Lesson 6: Conditional keystroke logging

l Lesson 7: Policy optimizations

Lesson 1: Basic policy

This lesson introduces the basic concept of running a command at a privileged level.
For a given list of users (in this case, dan and your defined LESSON_USER), run the
command as root.

Here is the relevant policy code:

if (user=="dan" || user==PMLESSON_USER) {
runuser="root";
accept;
}

If the policy server evaluates the policy without reaching an explicit "accept" statement,
the request is rejected.

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
90

Be sure to:

l Set the LESSON variable to 1.

l Switch to your test user.

l Enter the command pmrun whoami.

Text in bold represents commands you enter; the resulting output is shown in normal font.
The command output for the pmrun commands below has been slightly modified for brevity.

LESSON_USER=demo; export LESSON_USER
LESSON=1; export LESSON
su demo
$ whoami
demo
$ pmrun whoami
root
$ exit

As you can see the result of the whoami command without a pmrun prefix shows that you are
logged in as user demo. Repeating the command with a pmrun prefix, shows that you ran the
command as root.

Here is the policy code that implements this behavior:

if (user=="dan" || user==PMLESSON_USER) {
runuser="root";
accept;
}

If the user who submitted the pmrun request matches either "dan" or the PMLESSON_USER
variable, the runuser is set to "root" and the request is accepted.

The exit command at the end returns you to the root shell before proceeding to the
next lesson.

Refer to Lesson 1 Sample: Basic policy on page 103 to see the sample policy used in
this lesson.

Lesson 2: Conditional privilege

This lesson builds upon the previous lesson by narrowing the conditions under which
you can run the commands as root. It introduces the use of a policy variable,
dayname, and the function, timebetween(), to ensure that you can only run commands
within the predetermined time frame of typical office hours (weekdays, between 8:00
a.m. and 5:00 p.m.).

The dayname variable and the timebetween() policy function are used to reject requests
outside office hours:

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
91

if(dayname=="Sat" || dayname=="Sun" || !timebetween(800,1700))
reject;

This lesson assumes that the current date and time are within this time frame.

LESSON=2; export LESSON
su demo

Now, change the system date and attempt the command again using the following
commands:

$ pmrun date mmdd2100
Thu Feb 26 21:00:00 EDT 2012
$ pmrun date mmdd2100
Request Rejected by pmmasterd on UPMhost
$ exit

where:

l mm stands for month (for example, 03 for March)

l dd stands for day (for example, 10 for the 10th)

The output shown above illustrates that the first attempt to set the date succeeded because
the system date was within normal office hours. The second attempt fails because the time
is now set outside of normal office hours.

Remember to reset the correct time on your system by running the date command as
the root user.

Refer to Lesson 2 Sample: Conditional privilege on page 104 to see the sample policy used
in this lesson.

Lesson 3: Specific commands

This lesson narrows the scope of which commands you can run with root privilege. The
permitted list of commands is ls, hostname, and kill. Any other attempt to run a privileged
command is rejected.

The "command" variable stores the command name issued by pmrun:

if (command == "ls" || command == "hostname" || command == "kill") {
runuser = "root";
accept;

}

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
92

LESSON=3; export LESSON
su demo
$ pmrun shutdown
Request Rejected by pmmasterd on <UPMhost>
$ pmrun hostname
UPMhost
$ exit

where <UPMhost> is the host name

Refer to Lesson 3 Sample: Specific commands on page 105 to see the sample policy used in
this lesson.

Lesson 4: Policy optimization with list variables

This lesson improves upon the design of Lesson 3, making the policy easier to read and
faster to interpret with the introduction of list variables. List variables represent groups of
data, in this case users and commands, which you can use in multiple places as values for
test constraints.

adminusers = {"dan", "robyn"};
adminprogs = {"ls", "hostname", "kill"};

if (user in adminusers || user==PMLESSON_USER)
{ if (command in adminprogs)

{ runuser = "root";
accept;

}
}

The "in" operator is used to test whether a variable matches a member of a list:

su demo
$ pmrun shutdown
Request Rejected by pmmasterd on UPMhost
$ pmrun ls /etc/opt/quest/qpm4u
pm.settings policy

Refer to Lesson 4 Sample: Policy optimizations with list variables on page 106 to see the
sample policy used in this lesson.

Lesson 5: Keystroke logging

This lesson introduces two new and important elements of policy writing. You can enable
keystroke logging (I/O logging) at any point, and you can configure it to be conditional on
any required elements.

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
93

This example enables keystroke logging when the permitted user runs these two
commands, the csh and ksh shells; the user can run all other commands as root but without
logging keystrokes.

Setting the "iolog" variable to a filename creates a keystroke log with that filename:

iolog = mktemp("/var/adm/pm." + user + "." + command + ".XXXXXX");

You must choose the filename of the log file carefully. Its location and name are under the
complete control of the policy script and in order to ensure that the file is unique, use the
mktmp() function.

LESSON=5; export LESSON
su demo
$ pmrun csh

This request is logged in: /var/adm/pm.demo.csh.wXYeyn

In the example shown above, the log filename is displayed and the csh session is started.
Now enter commands to create I/O logging and then exit back to the parent shell.

date
cal
hostname
whoami
exit
$ exit

The output from these commands has been omitted for clarity.

It is now possible to replay this keystroke log file to display the session as seen by the demo
user. Run the following command as root.

/opt/quest/sbin/pmreplay /var/adm/pm.demo.csh.wXYeyn

Experiment with the controls within pmreplay to move backwards and forwards within the
log session, using these commands:

Control Description

g Go to start

G Go to end

[Space] bar Go to next input

t Display time stamp

v Dump variables

Table 16: Replay controls

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
94

Control Description

Backspace Previous position

Ctrl Next position

Quit

Refer to Lesson 5 Sample: Keystroke logging to see the sample policy used in this lesson.

Lesson 6: Conditional keystroke logging

This lesson extends the logging example from the previous lesson, adding an exclusion to
prevent privileged access outside of office hours, effectively combining the functionality
you saw in lesson two, and displaying a message to the requesting user in such a situation:

adminusers = {"dan", "robyn"};
adminprogs = {"ls", "hostname", "kill", "csh", "ksh", "pmreplay"};

adminusers=append(adminusers,PMLESSON_USER); #Add the lesson user to list

if (user in adminusers && command in adminprogs)
{ runuser = "root";

if (command in {"csh", "ksh"})
{ iolog = mktemp("/var/adm/pm." + user + "." + command +

".XXXXXX");
print("This command will be logged to:", iolog);

}

if (user in adminusers && (!timebetween(800,1700) || dayname in
{"Sat", "Sun"}))

{ print ("Sorry, you can't use that command outside office
hours.");

reject;
}

accept;
}

The above policy allows several admin programs to run, but only enables keystroke logging
for the interactive shells.

LESSON=6; export LESSON
date mmdd1000
su demo
$ pmrun hostname
UPMhost
$ exit

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
95

date mmdd2200
su demo
$ pmrun hostname
Sorry, you can't use that command outside office hours.
Request Rejected by pmmasterd on UPMhost
$ exit

where in the date commands, mm and dd refer to the two-digit representations of the month
and day respectively.

In this example, you set the date as root before switching to demo, your test user. With the
date initially set to a date/time combination which falls within office hours, Privilege
Manager for Unix accepts the command.

Privilege Manager for Unix rejected the command and displayed a message when you
exited back to the root shell, set the date/time to one outside of office hours, switched
back to the test user, demo, and repeated the exercise.

Having reached this point you have established a good repertoire of policy constructs which
form the basis of most policy file definitions. The use of list variables to hold constraint
information used in combination with conditional tests using the if() construct represents
the core function of most policy rules.

You use the print() and printf() functions to display messages and information throughout
the policy. To control the keystroke logging, you use the value of the iolog system variable
and the mktemp() function.

Remember to reset the correct time on your system by running the date command as
the root user.

Refer to Lesson 6 Sample: Conditional keystroke logging on page 108 to see the sample
policy used in this lesson.

Lesson 7: Policy optimizations

In this final interactive lesson, you will look at methods you can use to optimize your policy
using all of the constructions we have covered so far:

l list variables

l constraint tests

l I/O logging

l message display

Additionally, you are introduced to the concept of requesting a password as confirmation
before a certain command can be run.

One Identity recommends that you examine the policy and make any necessary
modifications to establish the password validation test performs as expected.

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
96

LESSON=7; export LESSON
date mmdd2200
su dan
$ pmrun hostname
Sorry, you can't use that command outside office hours.
Request Rejected by pmmasterd on UPMhost
$ exit
su robyn
$ pmrun hostname
$ Password: <type in Robyn's password>
UPMhost

Remember to reset the correct time on your system by running the date command as
the root user.

This lesson expands on the example in lesson 6. First, you forbid dan from running admin
commands outside normal office hours. Then, because you saved the boolean value
"officehours" earlier, you can check it again, this time to request for Robyn's password if
they attempt to run a command outside office hours.

officehours = timebetween(800, 1700) && dayname !in {"Sat", "Sun"};
adminusers = {"dan", "robyn"};
adminprogs = {"ls", "hostname", "kill", "csh", "ksh"};
if (user in adminusers && command in adminprogs) {
runuser = "root";
if (user == "dan" && !officehours) {
print("Sorry, you can't use that command outside office hours.");
reject;
}
if (user == "robyn" && !officehours) {
if (!getuserpasswd(user)) reject;
}
accept;
}

Refer to Lesson 7 Sample: Policy optimizations on page 109 to see the sample policy used
in this lesson.

Advanced lessons

The remaining lessons are theoretical discussions covering the changes to scripts and leave
the reader to consider modification and experimentation as exercises.

These lessons are not designed to be interactive. However, if you work through the sample
policies, making changes, and trying out the policy files in the same way you did for Lesson
1 through 7, you will extend your understanding of the process, approach, and style
required to create policies.

The advanced lessons are:

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
97

l Lesson 8: Controlling the execution environment

l Lesson 9: Flow control

l Lesson 10: Basic menus

Lesson 8: Controlling the execution environment

This policy file introduces a number of environmental controls that give you greater
flexibility and control over the command and user execution environment.

if (cwd != "/usr" && !glob("/usr/*", cwd))
runcwd = "/tmp";

The first uses the runcwd variable which gives you the ability to examine and override
the working directory in which the requested command runs. In this example, you
allow commands to be run from /usr and its subdirectories, but you run all other
commands from /tmp.

if (argc > 2)
runargv = range(argv, 0, 2);

You can also control the number of arguments specified on the requested command line.
You can examine the number of arguments together with the value of each argument, as
well as remove, modify, or supplement them with additional arguments not previously
present on the original command line.

runuser = "root";
rungroup = "bin";
if (command != "hostname")

runhost = submithost;

You can also examine the rungroup and the host on which the command is destined to run
and override them.

keepenv("TERM", "DISPLAY", "HOME", "TZ", "PWD", "WINDOWID", "COLUMNS", "LINES");
setenv("PATH",
"/usr/ucb:/bin:/usr/bin:/usr/local/bin:/usr/bin/X11:" +
"/usr/X11/bin:/usr/etc:/etc:/usr/local/etc:/usr/sbin");

Control of the run environment is vitally important as you can use environment variables to
exploit security vulnerabilities in some UNIX programs, so one aspect of the policy can be
to cleanse the execution environment to make sure there is nothing which could be
considered unsafe. A common requirement within policy files is to ensure that the PATH is
cleansed, removing any user appended paths which may be higher up the search path,
where a user-created script may be lurking.

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
98

runumask = 022;
runnice = -4;

You can control many other aspects of the execution environment including the nice
value and umask.

Refer to Lesson 8 Sample: Controlling the execution environment on page 111 to see the
sample policy used in this lesson.

Lesson 9: Flow control

This lesson introduces you to another execution control construct using switch(), case, and
break statements which allow you control which parts of the script are to run.

adminprogs = {"ls", "hostname", "kill", "csh", "ksh", "echo"};

if (command in adminprogs) {
switch (dayname) {

case "Mon":
case "Wed":
case "Fri":

adminusers = {"dan", "robyn"};
break;

case "Tue":
case "Thu":

adminusers = {"robyn", "cory"};
break;

default:
adminusers = {};

}
if (user in adminusers) {

runuser = "root";
accept;

}
}

In this example, you use the switch and case statements to control which users are
considered to be admin users on any given day of the week. Execution commences when
the first case statement matches the condition. It proceeds until it encounters the end of
the switch statement or reaches a break statement.

Refer to Lesson 9 Sample: Flow control on page 113 to see the sample policy used in
this lesson.

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
99

Lesson 10: Basic menus

This final lesson demonstrates the use of a rudimentary menu system which you can
present to the user when he enters the adminmenu command.

if(command=="adminmenu") {
print("========= Admin Menu =========");
print("1) Add users");
print("2) Start a backup");
print("3) Change ownership of a file");
print("4) Fix line printer queues");
choice = input("Please choose one: ");

switch(choice) {
case "1":

if(!getstringpasswd("m9xxg7B4.v8Ck", "Type in the adduser
password: ", 2))

reject;
runcommand = "/usr/local/bin/adduser";
runuser = "root";
break;

case "2":
runcommand = "/usr/local/bin/dobackup";
runuser = "backup";
break;

case "3":
runcommand = "/usr/bin/chown";
runuser = "root";
break;

case "4":
runcommand = "/usr/lib/lpadmin";
runuser = "root";
break;

default:
printf("\"%s\" was not a valid choice. Sorry.\n", choice);
reject;

}

if (choice == "3") {
file_name=input("Please enter the new owner's name then file name:

");
arguments = split(file_name);
runargv = insert(arguments, 0, "Spacer");

}
print("** Command to be run :", runcommand);
print("** User to run command as :", runuser);
accept;

}

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
100

This example shows how to gather input from the user, check the value of a literal hard-
coded password, and manipulate command line arguments. It is purely illustrative of the
scope and scale of what you can achieve from within a policy file, although there is much
more that has not been covered in this lesson.

Refer to Lesson 10 Sample: Basic menus on page 114 to see the sample policy used in
this lesson.

Sample policy files

Electronic copies of the policy file samples used in each lesson are located in the
/opt/quest/qpm4u/examples directory and they are reproduced for you in this section.

Main policy configuration file

##
Privilege Manager for Unix example configuration file
One Identity 2013
Example File : pm.conf
#
Establish which Lesson has been selected and include the appropriate file
accordingly
##
PMINST=getenv("INSTBASE","/opt/quest/qpm4u");
PMLESSON=atoi(getenv("LESSON","1"));
EXAMPLEDIR=PMINST + "/examples";
if (PMLESSON<1 || PMLESSON>11)

{ printf("Invalid lesson %i selected, resetting to Lesson 1\n",PMLESSON);
PMLESSON=1;

}
system("clear");
printf("Lesson %i is selected\n",PMLESSON);
The lessons take a user from the environment so that
none of the scripts require modification before use
this is taken from the environment variable LESSON_USER
Make sure that you have set this a valid user which will
be used for the purposes of this series of lessons.
PMLESSON_USER=getenv("LESSON_USER","demo");
if (PMLESSON_USER=="")

{ print("No user has been specified, user 'demo' will be assumed\n");
}

if (user!=PMLESSON_USER)
{ print("------------------------ WARNING ---------------------------");
printf("Your currently logged in as %s\n",user);
printf("Your selected user for the lessons is %s\n",PMLESSON_USER);

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
101

printf("This may not be what you intended, try 'su %s'\n",PMLESSON_USER);
print("---\n");

}
PML=sprintf("%i",PMLESSON);
switch (PML)

{
case "1":

{ include EXAMPLEDIR + "/example1.conf";
break;

}
case "2":

{ include EXAMPLEDIR + "/example2.conf";
break;

}
case "3":

{ include EXAMPLEDIR + "/example3.conf";
break;

}
case "4":

{ include EXAMPLEDIR + "/example4.conf";
break;

}
case "5":

{ include EXAMPLEDIR + "/example5.conf";
break;

}
case "6":

{ include EXAMPLEDIR + "/example6.conf";
break;

}
case "7":

{ include EXAMPLEDIR + "/example7.conf";
break;

}
case "8":

{ include EXAMPLEDIR + "/example8.conf";
break;

}
case "9":

{ include EXAMPLEDIR + "/example9.conf";
break;

}
case "10":

{ include EXAMPLEDIR + "/example10.conf";
break;

}
}

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
102

reject;

See Install the example policy file on page 86 for details on installing the example
policy file.

Lesson 1 Sample: Basic policy

#===
Privilege Manager for Unix example configuration file
One Identity 2013
#
Example File : example1
#
This file to have permissions of 600 (rw-------), and be owned by
root.
#===
#===
print("-------------LESSON 1 DESCRIPTION---------------------------");
printf("Policy file %s/examples/example1.conf\n",PMINST);
print("---");
printf("This basic lesson uses a policy allowing users %s and
dan\n",PMLESSON_USER);
print("the rights to run any command as root.\n");
print("For example, to test this enter the command pmrun whoami");
print("which will return the value root as the logged in user.");
print("---");
i=0;
while (i<argc)

{ printf("%s ",argv[i]); # Redisplay the original command line for clarity
i=i+1;

}
printf("\n");
if (user=="dan" || user==PMLESSON_USER) {

runuser="root";
accept;

}
#===

See Lesson 1: Basic policy on page 90 for details on using this sample policy file.

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
103

Lesson 2 Sample: Conditional privilege

#===
Privilege Manager for Unix example configuration file
One Identity 2013
#
Example File : example2
#
This file should have permissions of 600
(rw-------).
It must be owned by root.
#===
print("--------------- LESSON 2 DESCRIPTION ------------------");
printf("Policy file %s/examples/example2.conf\n",PMINST);
print("--");
printf("This policy rejects attempts to run commands outside of normal\n");
printf("office hours for users %s and dan.\n",PMLESSON_USER);
print("Otherwise all commands will be run as root.\n");
print("Try running a few different programs like date, hostname");
print("and even your favourite shell (csh, bash, ksh)");
print("Try these with the time/date set both in and outside office hours");
print("Remember to prefix them with pmrun");
print("--");
i=0;
while (i<argc)

{ printf("%s ",argv[i]); # Redisplay the original command line for clarity
i=i+1;

}
printf("\n");
#===
if (user=="dan" || user==PMLESSON_USER) {

Explicitly disallow commands run outside of regular office hours
if(dayname=="Sat" || dayname=="Sun" || !timebetween(800,1700))

reject;
runuser = "root";
accept;

}
#===

See Lesson 2: Conditional privilege on page 91 for details on using this sample policy file.

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
104

Lesson 3 Sample: Specific commands

#===
Privilege Manager for Unix example configuration file
One Identity 2013
#
Example File : example3
#
This file should have permissions of 600
(rw-------).
It must be owned by root.
#===
print("------------------ LESSON 3 DESCRIPTION ------------------------");
printf("Policy file %s/examples/example3.conf\n",PMINST);
print("--");
printf("This policy allows users %s and dan to run *some* programs as
root.\n",PMLESSON_USER);
print("Otherwise all other commands will be rejected.\n");
print("The permitted commands are kill, ls and hostname.");
print("Try running a few different programs and see what happens.");
print("Again, remember to prefix them with pmrun.");
print("--");
i=0;
while (i<argc)

{ printf("%s ",argv[i]); # Redisplay the original command line for clarity
i=i+1;

}
printf("\n");
#===
if (user=="dan" || user==PMLESSON_USER)

if (command == "ls" || command == "hostname" || command == "kill") {
runuser = "root";
accept;

}
#===

See Lesson 3: Specific commands on page 92 for details on using this sample policy file.

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
105

Lesson 4 Sample: Policy optimizations with list
variables

#===
Privilege Manager for Unix example configuration file
One Identity 2013
#
Example File : example4
#
This file should have permissions of 600 (rw-------).
It must be owned by root.
#===
print("------------------- LESSON 4 DESCRIPTION
-------------------------");
printf("Policy file %s/examples/example4.conf\n",PMINST);
print("--"
);
print("This lesson is identical to Lesson 3, but uses a different policy");
print("construct known as a list variable, making the policy simpler");
print("shorter and clearer to understand.");
print("Look at the policy files for lessons 3 & 4 and note the
differences.\n");
printf("This policy allows users %s, robyn and dan to run *some* programs as
root.\n",PMLESSON_USER);
print("Otherwise all other commands will be rejected.\n");
print("The permitted commands are kill, ls and hostname.");
print("Try running a few different programs and see what happens.");
print("Again, remember to prefix them with pmrun.");
print("--"
);
i=0;
while (i<argc)

{ printf("%s ",argv[i]); # Redisplay the original command line for clarity
i=i+1;

}
printf("\n");

#===
adminusers = {"dan", "robyn"};
adminprogs = {"ls", "hostname", "kill"};
if (user in adminusers || user==PMLESSON_USER)

{ if (command in adminprogs)
{ runuser = "root";

accept;
}

}
#===

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
106

See Lesson 4: Policy optimization with list variables on page 93 for details on using this
sample policy file.

Lesson 5 Sample: Keystroke logging

#===
Privilege Manager for Unix example configuration file
One Identity 2013
#
Example File : example5
#
This file should go in /etc/pm.conf with permissions of 600 (rw-------).
It must be owned by root.
#===
print("---------------- LESSON 5 DESCRIPTION ------------------");
printf("Policy file %s/examples/example5.conf\n",PMINST);
print("--");
print("This lesson introduces keystroke logging.");
printf("Users %s, robyn and dan are permitted to run everything as
root,\n",PMLESSON_USER);
print("but commands csh and ksh will be fully keystroke logged.");
print("This means that all I/O during these shell sessions will be logged.");
print("The log file is created with mktmp() and the name is displayed.");
print("The logfile will be something like pm.dan.ksh.a545456\n");
print("Look closely at Lesson 5 to see how logging is enabled.\n");
print("The log files can be replayed with the pmreplay utility.\n");
print("Don't forget to prefix commands with pmrun.");
print("--");
i=0;
while (i<argc)

{ printf("%s ",argv[i]); # Redisplay the original command line for clarity
i=i+1;

}
printf("\n");
#===
adminusers = {"dan", "robyn"};
Add the provided lesson user so they need not adjust the policy
adminusers = append(adminusers,PMLESSON_USER);
if (user in adminusers)

{ runuser = "root";
if (command in {"csh", "ksh"})

{ iolog = mktemp("/var/adm/pm." + user + "." + command + ".XXXXXX");
iolog_opmax=10000

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
107

print("This request will be logged in:", iolog);
}

accept;
}

===

See Lesson 5: Keystroke logging on page 93 for details on using this sample policy file.

Lesson 6 Sample: Conditional keystroke logging

#===
Privilege Manager for Unix example configuration file
One Identity 2013
#
Example File : example6
#
This file should go in /etc/pm.conf with permissions of 600
(rw-------).
It must be owned by root.
#===
print("-------------- LESSON 6 DESCRIPTION --------------------");
os=osname();
printf("Policy file %s/examples/"+os+"/example6.conf\n",PMINST);
print("--");
print("This lesson extends lesson 5 by adding some statements that cause");
printf("requests by %s, dan and robyn to be rejected if they arrive
outside\n",PMLESSON_USER);
print("of regular office hours (8AM until 5PM Monday to Friday).");
print("A message is printed to the user's screen if this happens.");
print("Once again examine the policy file, noting use of logical not
operator.");
print("Try altering the timebetween() and dayname tests and check the
results");
print("--");
i=0;
while (i<argc)

{ printf("%s ",argv[i]); # Redisplay the original command line for clarity
i=i+1;

}
printf("\n");
#===
adminusers = {"dan", "robyn"};
adminprogs = {"ls", "hostname", "kill", "csh", "ksh", "pmreplay"};
adminusers=append(adminusers,PMLESSON_USER); #Add the lesson user to list
if (user in adminusers && command in adminprogs)

{ runuser = "root";

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
108

if (command in {"csh", "ksh"})
{ iolog = mktemp("/var/adm/pm." + user + "." + command + ".XXXXXX");

print("This command will be logged to:", iolog);
}

if (user in adminusers && (!timebetween(800,1700) || dayname in {"Sat",
"Sun"}))

{ print ("Sorry, you can't use that command outside office hours.");
reject;

}
accept;

}
#===

See Lesson 6: Conditional keystroke logging on page 95 for details on using this sample
policy file.

Lesson 7 Sample: Policy optimizations

#===
Privilege Manager for Unix example configuration file
One Identity 2013
#
Example File : example7
#
This file should go in /etc/pm.conf with permissions of 600
(rw-------).
It must be owned by root.
#===
print("---------------- LESSON 7 DESCRIPTION -------------------");
os=osname();
printf("Policy file %s/examples/"+os+"/example7.conf\n",PMINST);
print("--");
print("This lesson extends lesson 6 using variables to store
constraints");
print("which you might want to use several times in the policy file.");
print("Here, we set a variable to store whether or not it is currently");
print("within office hours or not. By storing it in a variable, we can
refer");
print("to it several times later on in the file if need be, without having");
print("enter and resolve the whole lengthly constraint each time.");
print("\nIn this example, there are two bits which we are interested in");
print("whether or not it is currently within office hours. The first bit is");
print("the same as in lesson 6, disallowing dan's requests outside of");
print("office hours. The second bit, near the end, requires the user");
print("to type in robyn's password if robyn makes a request outside of
normal");

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
109

print("office hours. This would be useful to protect against the situation");
print("where a user leaves a terminal logged in overnight.");
print("--");
i=0;
while (i<argc)

{ printf("%s ",argv[i]); # Redisplay the original command line for clarity
i=i+1;

}
printf("\n");
#===
Here, we set officehours to true if it is within office hours (8AM until 5PM
Monday to Friday), false otherwise.
officehours = timebetween(800, 1700) && dayname !in {"Sat", "Sun"};
adminusers = {"dan", "robyn"};
adminprogs = {"ls", "hostname", "kill", "csh", "ksh"};
Add the provided lesson user
adminusers=append(adminusers,PMLESSON_USER);
if (user in adminusers && command in adminprogs)

{ runuser = "root";
if (command in {"csh", "ksh"})

{ iolog = mktemp("/var/adm/pm." + user + "." + command + ".XXXXXX");
print("This command will be logged to:", iolog);

}
Note how much more compact this is compared to example6.conf,
now that we can refer to the "officehours" variable.
if (user == "dan" && !officehours)

{ print ("Sorry, you can't use that command outside office hours.");
reject;

}
Now we refer to "officehours" again. This time, if "robyn" is making
the request outside of office hours, robyn is asked to correctly
type in robyn's password. If it is not typed in correctly, the request
is rejected.
if (user == "robyn" && !officehours)

{ if(!getuserpasswd(user)) reject;
}
accept;

}
#===

See Lesson 7: Policy optimizations on page 96 for details on using this sample policy file.

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
110

Lesson 8 Sample: Controlling the execution
environment

#===
Privilege Manager for Unix example configuration file
One Identity 2013
#
Example File : example8
#
This file should have permissions of 600
(rw-------).
It must be owned by root.
#===
#===
This example shows how facets of a job's run-time operating
environment can be set up using Privilege Manager for Unix.
Although the policies listed here are arbitrary, their structure
can be used as examples or how to implement your own real policies.
For experimental purposes, replace "dan" and "robyn" with user
names from your own site.
adminusers = {"dan", "robyn"};
adminprogs = {"ls", "hostname", "kill", "csh", "ksh", "echo"};
if (user in adminusers && command in adminprogs) {

What directory should this job run in? For this example, we
want to say that if the job is executed from any directory
under /usr, it can be allowed to execute in that directory.
If it is not being executed from a directory under /usr, it
should execute in /tmp.
if(cwd != "/usr" && !glob("/usr/*", cwd))

runcwd = "/tmp";
Do not allow more than 2 arguments to be specified to the
command. The range function is used here to return only the
first 3 arguments of the argv list. The first element is the
command name, the second element is the first argument to
the command, and the third element is the second argument
to the command.
if(argc > 2)

runargv = range(argv, 0, 2);
Require the request to run as root.
runuser = "root";
Require the request to run in the "bin" group.
rungroup = "bin";
if the command being run is "hostname", run that command on
whatever machine the user requests (by default, the same
machine that pmrun is run from, but this can be changed
using pmrun's -h argument). Otherwise, requests should only
run on the same machine that the pmrun request was

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
111

submitted from.
if(command != "hostname")

runhost = submithost;
Since environment variables can sometimes be used to
exploit security holes in UNIX programs and shell scripts,
we should be careful to set up the job's environment
variables safely. We start by deleting any and all
environment variables except those specified in the
following list.
keepenv("TERM", "DISPLAY", "HOME", "TZ", "PWD", "WINDOWID",
"COLUMNS", "LINES");
Next we explicitly set up the PATH variable, so that only
safe directories are on it. Note the use of + to
concatenate the value that we want to assign to the PATH
variable. We use + so that we can split it up over 2 lines
to avoid ugly end-of-line wrapping.
setenv("PATH",
"/usr/ucb:/bin:/usr/bin:/usr/local/bin:/usr/bin/X11:" +
"/usr/X11/bin:/usr/etc:/etc:/usr/local/etc:/usr/sbin");
We ensure that the SHELL variable is set safely. If the
existing SHELL variable is set to a safe value, which we
define as any of /bin/sh, /bin/csh, or /bin/ksh, then we
use that value. If not, then we use /bin/sh.
Note: getenv reads from the "env" variable, setenv and
keepenv write to the "runenv" variable.
safeshells = {"/bin/sh", "/bin/csh", "/bin/ksh"};
if(getenv("SHELL") in safeshells)

setenv("SHELL", getenv("SHELL"));
else

setenv("SHELL", "/bin/sh");
Set the command's umask to 022 -- this means that data
files created by the command will have rw-r--r--
permissions, and executable files will have rwxr-xr-x
permissions. Since the command will run as root, root will
own the files. Note that we specify a leading zero when
typing in umask values, so that the values will be interpreted in
octal.
runumask = 022;
The command should run with a "nice" value of -4, so that it
runs with a high priority relative to other jobs on the
system.
runnice = -4;

accept;
}
#===

See Lesson 8: Controlling the execution environment on page 98 for details on using this
sample policy file.

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
112

Lesson 9 Sample: Flow control

#===
Privilege Manager for Unix example configuration file
One Identity 2013
#
Example File : example9
This file should have permissions of 600
(rw-------).
It must be owned by root.
#===
#===
This example shows how the switch and case statement can be used.
In this case, we allow different users to act as system
administrators on different days of the week.
For experimental purposes, replace "dan", "cory", and "robyn" with
user names from your own site.
adminprogs = {"ls", "hostname", "kill", "csh", "ksh", "echo"};
if (command in adminprogs) {

switch (dayname) {
case "Mon":
case "Wed":
case "Fri":

adminusers = {"dan", "robyn"};
break;

case "Tue":
case "Thu":

adminusers = {"robyn", "cory"};
break;

default:
adminusers = {};

}
if (user in adminusers) {

runuser = "root";
accept;

}
}
#===

See Lesson 9: Flow control on page 99 for details on using this sample policy file.

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
113

Lesson 10 Sample: Basic menus

#===
Privilege Manager for Unix example configuration file
One Identity 2013
#
Example File : example10
#
This file should have permissions of 600
(rw-------).
It must be owned by root.
#===
#===
This example shows how to implement a menu system with 4 choices.
Also, if the "adduser" program is to be run, a password must be
entered correctly.
For experimental purposes, replace "dan", "cory", and "robyn" with
user names from your own site.
if(command=="adminmenu") {

print("========= Admin Menu =========");
print("1) Add users");
print("2) Start a backup");
print("3) Change ownership of a file");
print("4) Fix line printer queues");
choice = input("Please choose one: ");
switch(choice) {
case "1":

Reject the request if the password "123456" is not entered
correctly. The user gets only 2 chances to type in the
password. The encrypted version of the password seen here
was generated using pmpasswd. If you store encrypted
passwords in your config file, make sure you turn off read
permission on the file so that people cannot use password
cracking programs to guess them.
if(!getstringpasswd("m9xxg7B4.v8Ck", "Type in the adduser password: ",2))

reject;
runcommand = "/usr/local/bin/adduser";
runuser = "root";
break;

case "2":
runcommand = "/usr/local/bin/dobackup";
runuser = "backup";
break;

case "3":
runcommand = "/usr/bin/chown";
runuser = "root";
break;

case "4":

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
114

runcommand = "/usr/lib/lpadmin";
runuser = "root";
break;

default:
printf("\"%s\" was not a valid choice. Sorry.\n", choice);
reject;

}
if (choice == "3") {

file_name=input("Please enter the new owner's name then file name: ");
arguments = split(file_name);
runargv = insert(arguments, 0, "Spacer");

}
print("** Command to be run :", runcommand);
print("** User to run command as :", runuser);
accept;

}
#===

See Lesson 10: Basic menus on page 100 for details on using this sample policy file.

Privilege Manager for Unix 7.1 Administration Guide

The Privilege Manager for Unix Security Policy
115

9

Advanced Privilege Manager for
Unix Configuration

This section provides advanced information on how to configure and implement Privilege
Manager for Unix:

l Privilege Manager for Unix shells

l Configuring Privilege Manager for Unix for policy scripting

l Configuring firewalls

l Configuring Kerberos encryption

l Configuring certificates

l Configuring alerts

l Configuring Pluggable Authentication Method (PAM)

Privilege Manager for Unix shells

Privilege Manager for Unix shells provide a means of auditing and controlling a user’s login
session in a way that is transparent to the user, without the user having to preface
commands with pmrun.

Privilege Manager for Unix provides enabled versions of these standard shells: pmksh,
pmsh, pmcsh, and pmbash. Each shell uses the same policy file variables to control the
behavior of the shell.

By default, all built-in shell commands are allowed to run without any further
authorization by the shell; however, you must authorize all non-built-in shell commands.
Once authorized, all commands are run locally by the shell with the authority of the user
running the shell.

You can configure the level of control required for commands running from a shell in the
policy file by configuring the policy file to either forbid commands or allow them to be run
by the shell program without any further authorization to the policy server. You can also
configure the policy file to authorize them as they are presented to the policy server for

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
116

audit logging. Furthermore, you can configure keystroke logging for the shell session to be
logged to a single I/O log file.

Privilege Manager for Unix shell features

Use a Privilege Manager for Unix shell to control or log Privilege Manager for Unix
sessions, regardless of how you are logged in (for example, telnet, ssh, rsh, rexec).

You can use one of these Privilege Manager for Unix-enabled shells to create a fully
featured shell environment for a user:

l pmksh: a Privilege Manager for Unix-enabled version of Korn Shell

l pmsh: a Privilege Manager for Unix-enabled version of Bourne Shell

l pmcsh: a Privilege Manager for Unix version of C Shell

l pmbash: a Privilege Manager for Unix version of Bourne Again Shell

Each shell provides command control for every command entered by a user during a login
session. You can configure each command the user enters to be authorized with the policy
server before it runs. This includes the shell built-in commands.

You can configure keystroke logging for the entire login session and login to a single file.

Alternatively, you can use pmshellwrapper to act as a Privilege Manager for Unix wrapper
for any valid shell program on a host, or create a custom Privilege Manager for Unix shell
by means of a shell script. In these cases, however, the individual commands run during
the login session are not controlled by Privilege Manager for Unix.

To use pmshellwrapper, create a link using the name of the system shell you want to run.
For example, to create a wrapper for bash, enter:

ln -s /opt/quest/libexe/pmshellwrapper/opt/quest/libexe/pmshellwrapper_bash

When you run the pmshellwrapper_bash program, it transparently runs pmrun bash instead.

For example, to create a custom Privilege Manager for Unix shell (a shell script that runs
the actual shell using pmrun), run:

#!/bin/ksh
tty 2>/dev/null 1>/dev/null
x=$?
if [$x -ne 0]
then
exec /opt/quest/bin/pmrun ksh "$@"
else
exec /opt/quest/bin/pmrun -c -ksh "$@"
fi

Add the full pathname of the shell program to the /etc/shells file if you are using pmksh,
pmsh, pmcsh, pmbash, or pmshellwrapper on your system.

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
117

Forbidden commands

Use the pmshell_forbid list variable in the policy file to define a list of commands you want
the shell to forbid without any further authorization by the policy server. The shell program
interprets this list as a list of regular expressions. Privilege Manager for Unix checks each
command a user enters against this list. If a match is found, it rejects the command
without further authorization. These commands do not result in a reject entry in the event
log as they are forbidden by the shell. You can also configure the message that is displayed
when it issues one of these commands.

Allowed commands

Use the pmshell_allow list variable in the policy file to define a list of commands you want
the shell to allow without any further authorization by the policy server. The shell program
interprets this list as a list of regular expressions. Privilege Manager for Unix checks each
command the user enters against this list. If a match is found, it allows the command
without further authorization. These commands do not result in an accept entry in the event
log as they are allowed by the shell.

Allowed piped commands

Use the pmshell_allowpipe variable in the policy file to configure a list of commands you
want the shell to allow without further authorization by the policy server if the input to the
command is a pipe. The shell program interprets this list as a list of regular expressions.
Privilege Manager for Unix checks each command a user enters against this list if the
input to the command is a pipe. If a match is found, it allows the command without further
authorization. These commands do not result in an accept entry in the event log as they
are allowed by the shell. This allows the shell to authorize commands only within a
particular context.

For example, if the allowed pipe command list contains grep, as in:

grep "root" /etc/shadow

the shell authorizes the grep command as its input does not come from a pipe.

On the other hand, if you enter:

cat /etc/shadow | grep "root"

the shell only authorizes the cat command. The grep command is allowed without
authorization.

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
118

Check shell built-in commands

Built-in shell commands are functions defined internally to the shell. You can apply a
policy to shell built-in commands by setting pmshell_checkbuiltins=1. The shell does not
create a new UNIX process to run a built-in command and does not access or run any
program outside the shell to run a built-in command. The shell built-in commands usually
include functions like echo and cd. The full list of shell built-in commands depends on the
shell you are using; to see the command list for a particular shell, run the shell with the
–? argument.

By default, shell built-in commands are not authorized to the policy server or checked
against the allow and forbid lists.

You can set a flag to force the shell to treat all shell built-in commands as if they are
normal, executable commands. If this flag is set, all built-in commands are compared with
the forbid and allow lists, and if no match is found, they are presented to the policy server
for authorization.

Read-only variable list

Use the pmshell_readonly list variable to define a list of environment variables in the
policy file to be read-only in the shell. You can not change read-only variables during a
shell session.

Running a shell in restricted mode

Set pmshell_restricted=1 to configure the shell to run in restricted mode. Restricted mode
applies these restrictions to the shell:

l A user cannot change the directory.

l A user cannot change the value of these parameters: PATH, SHELL, or ENV. You must
set these up using the secure profile (if the user is running a login shell), or by
setting these variables in the policy file.

l A user cannot run any command that is identified by an absolute or relative
pathname, including absolute paths defined in shell aliases. The user can only run
shell built-in commands or executable files that are in the read-only PATH. For
example, the following commands are not allowed:

l /usr/bin/ls

l ./script.sh

l alias ll='/bin/ls -F'

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
119

The commands ls and script.sh are allowed if /usr/bin and . are in the PATH; the
command ll would not be allowed because the substituted command is an
absolute path.

l A user cannot use I/O redirection with the ">" or "<" characters.

For example, the following command will fail:

echo "hello" > /tmp/file

l A user cannot run in privileged mode (if supported by the shell).

If the shell is run as a login shell for a user, then during the login process, the relevant
system and user profiles are loaded for that particular shell. During this sequence, the shell
checks the ownership and permissions of each startup file loaded.

Any restrictions configured for the shell are not applied while loading a secure profile; that
is, a file owned by root and only writable by root. Any restrictions configured for the shell
are only applied if the profile is not secure. For example, if PATH is configured as a read-
only variable in the policy file, and the built-in command cd is forbidden, then the PATH
initialization in the secure system profile /etc/profile is allowed without restriction or
authorization, but any attempt to change the PATH variable or to run the cd command in the
insecure user’s personal profile, or during the interactive login session will be forbidden.

Additional shell considerations

The order in which the restrictions are applied to the shell are:

1. forbidden commands list

2. allowed commands list

3. allowed pipe list, if the input is a pipe

The shell, and the commands run from within it, run as the selected runuser and rungroup
for the shell program. Once the shell is running, you cannot change the runuser or rungroup
for authorized commands within the shell. To run an individual shell command as a
different user, run the pmrun <cmd>.

You can change the arguments to a command running within a shell, the environment
variables, and the priority for a command. For example, if you configure the shell to
authorize built-in commands, then you can prevent a user from changing to any directory
other than the user’s home directory by removing all except the first argument from the cd
command. For example:

if (runcommand=="cd")
{

len=length(runargv);
runargv=replace(runargv,1,len);

}

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
120

The exec command is always forbidden if an attempt is made to run it from the top-level
interactive shell process, as this would overlay the existing controlled Privilege Manager
for Unix shell with an unrestricted shell. For example, an attempt to run this command
from an interactive shell is forbidden:

exec /bin/sh

A Privilege Manager for Unix-enabled shell requires two connections to the policy server
host. One is used for keystroke logging by the shell program itself, and one is used for
authorizing commands to be run during the shell session.

Example

allowed_pmshells = { "pmsh", "pmcsh", "pmksh" };
pmshell only defined if a shell or cmd within a shell
if (defined pmshell)
{

Configure Privilege Manager for Unix Shells
if (pmshell_cmd == 0) {

if (pmshell_prog in allowed_pmshells) {
print("Starting Privilege Manager for Unix Shell");

pmshell_restricted=0;
Restricted Shell: 0=disable|1=enable

pmshell_checkbuiltins=0;
Force checking of Shell BuiltIns: 0=disable|1=enable

pmshell_allow={"ls", "man"};
list of commands to accept without further authorization.

accept;
}
else {

reject "You are not authorized to run this shell";
}

}
Authorize all commands executed from within a shell
else {

Define list of commands allowed to run as the root user.
privileged_cmds = { "/sbin/service", "/usr/bin/kill", "/usr/bin/id" };

if (command in privileged_cmds) {
runuser = "root";
rungroup = "root";

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
121

}
print("Executing command as user: " + runuser);
accept;

}
}

Configuring Privilege Manager for Unix
for policy scripting

If you have successfully completed the Privilege Manager for Unix installation and you are
new to Privilege Manager for Unix, One Identity recommends that you work through the
semi-interactive lessons in Policy scripting tutorial on page 86. This will help familiarize
you with the basic functionality of Privilege Manager for Unix.

Configuration prerequisites

Before you configure Privilege Manager for Unix, make sure

l TCP/IP is configured and running on all relevant machines.

l Applications, files, and accounts you wish to access using Privilege Manager for Unix
are available from all servers.

l pmrun is in a directory in the user's PATH and is executable. pmrun is owned by root,
and has the SETUID bit turned on.

l pmmasterd and pmlocald are set up in /etc/services (this is created by the pmsrvconfig
installation script).

This is a sample services file:

pmmasterd 12345/tcp
pmlocald 12346/tcp

l The /etc/opt/quest/qpm4u/pm.settings file has been set up (this is done by
pmsrvconfig).

This is a sample pm.settings file, showing you the defaults for each setting:

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
122

kerberos NO
encryption AES
reconnectClient NO
reconnectAgent NO
clientVerify NONE
FailOverTimeOut 10
Certificates NO
selecthostrandom YES
shortnames YES
syslog YES
pmservicedLog /var/log/pmserviced.log
masterport 12345
localport 12346
tunnelport 12347
masters qpm4u
pmmasterdlog /var/log/pmmasterd.log
pmmasterdEnabled YES
pmmasterdOpts -ar
policymode pmpolicy
pmlogGroup pmlog

Configuration file examples

The topics that follow walk you through some detailed examples for the configuration
file policy.

To install the configuration file examples on your machine

1. Checkout the policy file:

pmpolicy checkout -d /tmp/example

2. Copy example to the checkout directory and rename to pm.conf.

cp /opt/quest/qpm4u/examples/exampleX.conf /tmp/example/policy_
pmpolicy/pm.conf

where X in exampleX.conf is 1, 2, 3,...10.

3. Edit the configuration file and change the user name to a user name on your
machine.

vi /tmp/example/policy_pmpolicy/pm.conf

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
123

4. Commit the changes and enter a commit log message:

pmpolicy commit -d /tmp/example
** Validate options [OK
]
** Commit copy in directory:/tmp/example/policy_pmpolicy

** Check directory [OK
]

** Perform syntax check [OK
]

** Verify files to commit [OK
]

Please enter the commit log message: Changed user name
** Commit change from working copy [OK

]
** Committed revision 4

5. Run a command using pmrun using the user name you specified. For example:

$ pmrun ls -l /tmp

Example 1: Basics

When you use pmrun to run a command, pmmasterd starts up and looks in the Privilege
Manager for Unix configuration file for the conditions under which it should accept or reject
the request.

The following configuration file fragment allows Dan to run programs as root:

if(user=="dan")
{ runuser="root";
accept;

}

Type this fragment into the /etc/opt/quest/qpm4u/policy/pm.conf file, or copy it from the
examples directory in the Privilege Manager for Unix distribution directory. Replace "dan"
with your own user name in quotes.

The syntax of the configuration language is similar to the C programming language:

l Each statement ends with a ; (semicolon)

l = (single equals) assigns values to variables

l == (double equals) compares values for equality

l () (parentheses) enclose the conditional expressions in an if statement

l { } (braces) group statements together

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
124

l " " (double quotes) enclose strings

l White space, tab stops, or indentation are ignored

In the example above, the braces { } group the two statements that run if the conditions in
the if statement are met. The accept statement causes pmmasterd to accept the request,
and asks pmlocald to run whatever command Dan requests as root.

Use the pmcheck program to check the example for errors. pmcheck gives you a line number
and brief description for each error found.

Note that pmcheck assumes that the configuration file exists in
/etc/opt/quest/qpm4u/policy/pm.conf unless you specify otherwise on the command line
with a -f filename argument.

For example, if pmcheck finds a syntax error on line 2 of the configuration file, it prints out a
message similar to the following:

% pmcheck Version 6.0.0 (003) licensed until Thu Nov 1 06:00:00 2012 Parse error in
"/etc/opt/quest/qpm4u/policy/pm.conf", line 1: syntax error near ';' File
/etc/opt/quest/qpm4u/policy/pm.conf contains 1 error.

If pmcheck finds no errors, it displays a message similar to this:

% pmcheck
Version 6.0.0 (003) licensed until Thu Nov 1 06:00:00 2012

File /etc/opt/quest/qpm4u/policy/pm.conf contains 0 errors.

Try running a few more commands, such as date, hostname, and your favorite shell (such
as, csh, sh, or ksh) by preceding the command with pmrun. For example:

pmrun date

Example 2: Accept or reject requests

By default, pmmasterd rejects all requests. It only accepts requests if it reaches an accept
statement after the appropriate conditions are met in the configuration file. When
pmmasterd rejects a request, it does not run the requested program and it sends the user an
explanatory message.

pmmasterd can also reject commands explicitly. The following fragment rejects Dan’s
request to run commands outside of regular office hours:

accept [from ["user"][, ["submithost"][, ["command"]
[, ["runhost"]]]]] [when conditional-expression]
[with optional-statements-before-execution];

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
125

reject ["reject-text"] [from ["user"][, ["submithost"]
[, ["command"][, ["runhost"]]]]]
[when conditional-expression];

if(user=="dan") {
Explicitly disallow commands run outside of
#regular office hours
if(dayname=="Sat" || dayname=="Sun" ||

!timebetween(800,1700))
reject;

runuser="root";
accept;

}

Once it reaches a reject statement, pmmasterd reads no further statements; the request
ends as soon as it is rejected. Note that no braces { } enclose the reject statement, since it
is the only statement that occurs inside the inner if statement. Note also the use of the ||
("or") and ! ("not") operators in the if statement which translates as "if the current day is
Saturday or Sunday, or if the current time is not between 8:00 a.m. and 5:00 p.m., then
reject the request."

Type this fragment into the /etc/opt/quest/qpm4u/policy/pm.conf file, or copy it from the
examples directory in the Privilege Manager for Unix distribution directory. Replace "dan"
with your own user name in quotes. Check the configuration file for errors with pmcheck.
Then try to run commands with pmrun. For more information about using pmcheck, see
Example 1: Basics on page 124.

Try changing the times specified to timebetween, to cause requests to be accepted
or rejected.

Example 3: Command constraints

This configuration file fragment restricts Dan to running only certain programs (ls,
hostname, or kill) as root.

Type this fragment into the /etc/opt/quest/qpm4u/policy/pm.conf file, or copy it from the
examples directory in the Privilege Manager for Unix distribution directory. Replace "dan"
with your own user name in quotes.

if (user=="dan")
if(command=="ls" || command=="hostname" ||

command=="kill") {
{ runuser="root";

accept;
}

Check the configuration file for errors with pmcheck. For more information about using
pmcheck, see Example 1: Basics on page 124. Try to run one of the programs permitted,
then try something that will be rejected, such as:

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
126

pmrun mail

Example 4: Lists

Rather than entering individual commands as in Example 3, you can use list variables as
shown below. Note the use of the && ("and") operator in the if statement.

This simple fragment allows users Dan and Robyn to run certain commands as root. Type
this fragment into the /etc/opt/quest/qpm4u/policy/pm.conf file, or copy it from the
examples directory in the Privilege Manager for Unix distribution directory. Replace "dan"
and "robyn" with users from your own site.

adminusers={"dan", "robyn"};
adminprogs={"ls", "hostname", "kill"};

if(user in adminusers && command in adminprogs) {
runuser="root";
accept;

}

Check the configuration file for errors with pmcheck. Run different commands with pmrun to
see which ones are accepted, and which are rejected. Try logging in as one of the users
who is not listed in adminusers. Then, try running a command as that user to see if Privilege
Manager for Unix rejects the request. List variables are useful in tidying up policy
fragments, especially if the information in a list is used more than once.

Example 5: I/O logging, event logging, and replay

The configuration file fragment below permits admin users Dan and Robyn to run certain
commands as root. If the user requests csh or ksh, the input and output from these
commands is logged. Privilege Manager for Unix also logs events, whether a request was
accepted or rejected, and when a job finishes.

In this example, the input/output is logged to a file in /var/adm with a filename such as
pm.dan.ksh.a05998, which you can examine later using pmreplay. The name of the I/O log is
a unique temporary filename generated by the mktemp function.

Type this fragment into the /etc/opt/quest/qpm4u/policy/pm.conf file, or copy it from the
examples directory in the Privilege Manager for Unix distribution directory. Replace "dan"
and "robyn" with users from your site.

adminusers = {"dan", "robyn"};
adminprogs = {"ls", "hostname", "kill", "csh", "ksh", "pmreplay"};

if (user in adminusers){
runuser="root";

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
127

if (command in {"csh", "ksh"})
{ iolog=mktemp("/var/adm/pm." + user + "."

+ command + ".XXXXXX");
iolog_opmax=10000;

print("This request will be logged in:", iolog);
}

accept;
}

Check the configuration file for errors with pmcheck. For more information about using
pmcheck, see Example 1: Basics on page 124.

Try running csh or ksh with pmrun, and typing a few commands in the shell. Exit from the
shell, find the I/O log file in /var/adm, and replay the session with pmreplay.

Privilege Manager for Unix sets the permissions on the I/O log file so that only root can
read the file. That way, no other user can examine the contents of the log files. You must
be logged in as root to use pmreplay on these files. Of course, you can use pmrun to run a csh
or ksh as root, and then run pmreplay. Or you can add pmreplay to the list of adminprogs, and
then use pmrun to run it directly.

Note that pmreplay can detect whether a log file has changed. See pmreplay on page 447
for more information on running pmreplay interactively and non-interactively.

As root, run pmreplay, giving the name of the log file printed to the screen as an argument.
For example, if the log filename is /var/adm/pm.dan.ksh.a05998, enter:

pmreplay /var/adm/pm.dan.ksh.a05998

You will see something similar to this:

==
Log File : ./pm.dan.ksh.a05998
Date : 2008/02/25
Time : 12:00:00
Client : dan@sala.companyname.com
Agent : dan@sala.companyname.com
Command : ksh
Type '?' or 'h' for help
===

Use these commands to navigate through the log file:

Control Description

g Go to start

G Go to end

Table 17: Log navigation commands

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
128

Control Description

p Pause/resume replay in slide-show mode

q Quit

r Redraw from start

s skip to next time marker

t Display time stamp

u undo

v Dump variables

[Space] bar Go to next input (usually a single character)

[Enter] Next new line

[Backspace] Backup to last position

/<re>[Enter] Search for a regular expression

Repeat last search

Make your way through the log file by pressing the [Space] bar (next input character), the
[Enter] or [Newline] key, or the s character which shows you what happened each time
interval. You can backup through the log file by pressing the [Backspace] key. You can
quickly go the start or end of the log file with g or G, respectively.

Display the time of an action at any point in the log file with t, redraw the log file with
r, and undo your last action with u. You can also display all the Privilege Manager for
Unix variables which were in use at the time the log file was created with v. Use q or Q
to quit pmreplay.

You must run the pmreplay command as root because the log files created are readable only
by root; however, pmreplay is itself a good candidate for a program to run through Privilege
Manager for Unix. Note, in the following example, pmreplay is listed as one of the
commands that Privilege Manager for Unix accepts.

Event logging is controlled by eventlog, which specifies the name of the file in which events
("accept", "reject", "finish") are logged. The default is /var/opt/quest/qpm4u/pmevents.db. If
you do not want to use the default, see Local logging on page 152 for details.

You can encrypt the contents of the event log. See Event logging on page 153 for details.

To view the event log, use the pmlog command. Although pmlog prints all entries in the file
by default, you can restrict it to print only certain entries. For example, to print only those
events which occurred after Feb 5, 2012, enter:

pmlog -c'date=="2012/2/5"'

To print out all the variables stored with each entry, enter:

pmlog -v | more

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
129

The above command line pipes the voluminous output using more for easier viewing. You
can also specify the output format and set the output for all event types.

Example 6: More complex policies

The fragment below extends the previous example by rejecting requests from Dan if they
are made outside regular office hours, defined as 8:00 a.m. to 5:00 p.m., Monday through
Friday. A message explaining the rejection is printed to Dan’s screen if this occurs.

Type the following code fragment into the /etc/opt/quest/qpm4u/policy/pm.conf file, or
copy it from the examples directory in the Privilege Manager for Unix distribution
directory. Replace "dan" and "robyn" with users from your site (in quotes). Check the
configuration file for errors using pmcheck. For more information about using pmcheck, see
Example 1: Basics on page 124.

adminusers={"dan", "robyn"};
adminprogs={"ls", "hostname", "kill", "csh", "ksh",
"pmreplay"};

if(user in adminusers && command in adminprogs)
{ runuser="root";

if(command in {"csh", "ksh"}) {
{ iolog=mktemp("/var/adm/pm." + user + "."+ command

+".XXXXXX");
print("This command will be logged to:", iolog);

}
if(user=="dan" &&

(!timebetween(800,1700) || dayname in {"Sat", "Sun"}))
{

print("Sorry, you can't use that command outside office
hours.");

reject;
}

accept;
}

Try running a few commands with pmrun. Change the parameters for timebetween to exclude
the current time, and run one of the permitted commands. Privilege Manager for Unix
should reject the request and print the message to your screen. You should only be able to
run the permitted commands during the specified time period. Try running pmreplay to
replay some of the logged csh or ksh sessions.

Example 7: Use variables to store constraints

Similar to Example 6, the fragment below defines a variable to store a set of constraints (in
this case, office hours) which may be used more than once in the configuration file. This
saves you from typing the constraints each time you need to refer to them.

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
130

In the following example, there are two policies which depend on office hours. The first
policy rejects Dan’s requests if they are made outside office hours. The second policy
requires Robyn to type in her password if she makes a request outside regular office hours.
Note that officehours is set to "true" if the time of the request falls between 8:00 a.m. and
5:00 p.m., Monday to Friday. It is "false" if it is not in that time frame.

officehours = timebetween(800, 1700) &&
dayname !in {"Sat", "Sun"};

adminusers={"dan", "robyn"};
adminprogs={"ls", "hostname", "kill", "csh", "ksh", "pmreplay"};
if(user in adminusers && command in adminprogs)

{ runuser="root";
if(command in {"csh", "ksh"})

{ iolog=mktemp("/var/adm/pm." + user + "."
+ command + ".XXXXXX");

print("The command will be logged in:", iolog);
}

Note how compact the following fragments are compared to
example6.conf, referring to the "officehours" variable.

if(user=="dan" && !officehours)
{ print ("Sorry, you can't do that outside office hours.");

reject;
}

if(user=="robyn" && !officehours)
if(!getuserpasswd(user))

reject;
accept;

}

Type this fragment into the /etc/opt/quest/qpm4u/policy/pm.conf file, or copy it from the
examples directory in the Privilege Manager for Unix distribution directory. Replace "dan"
and "robyn" with users from your site. Check the configuration file for errors with pmcheck.
Then try to run commands with pmrun. For more information about using pmcheck, see
Example 1: Basics on page 124.

Example 8: Control the run-time environment

This example demonstrates how you can set up a particular job's run-time operating
environment with Privilege Manager for Unix. Although the policy fragments shown below
are arbitrary, you can use similar fragments to implement your own policies.

Type the following fragment into the /etc/opt/quest/qpm4u/policy/pm.conf file, or copy it
from the examples directory in the Privilege Manager for Unix distribution directory.
Replace "dan" and "robyn" with users from your site.

Do not type in the line numbers.

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
131

1 # Run-time example configuration file
2 adminusers={"dan", "robyn"};
3 adminprogs={"ls", "hostname", "kill", "csh", "ksh", "echo"};
4 if(user in adminusers && command in adminprogs) {
5 if(!(cwd=="/usr" || glob("/usr/*", cwd))
6 runcwd="/tmp";
7 if(argc > 2)
8 runargv=range(argv, 0, 2);
9 runuser="root";
10 rungroup="bin";
11 if(command!="hostname")
12 runhost=submithost;
13 keepenv("TERM", "DISPLAY", "HOME", "TZ", "PWD", "WINDOWID", "COLUMNS",
"LINES");
14 setenv("PATH", "/usr/ucb:/bin:/usr/bin:/usr/local/bin:/usr/bin/X11:" +
15 "/usr/X11/bin:/usr/etc:/etc:/usr/local/etc:/usr/sbin");
16 safeshells={"/bin/sh", "/bin/csh", "/bin/ksh"};
17 if(getenv("SHELL") in safeshells)
18 setenv("SHELL", getenv("SHELL"));
19 else
20 setenv("SHELL", "/bin/sh");
21 runumask=022;
22 runnice=-4;
23 accept;
24 }

The following describes the results of this example:

l Lines 5, 6

These lines designate in which directory the job will run. Line 5 checks the current
working directory: if the cwd variable is /usr or if it glob-matches "/usr/*", the
request will run under that directory. If not, the request will run in /tmp.

l Lines 7, 8

In this example, no more than two arguments are allowed to be specified to the
requested command. The range function in line 8 returns all arguments and only the
first three elements of the argv list (element 0, which is the command name;
element 1, the first argument; and element 2, the second argument).

l Line 9

This line causes the request to run as root.

l Line 10

This line causes the request to run as the bin group.

l Line 11, 12

These lines specify that if the command is not hostname, run it on the machine from
which the request was submitted. If the command is hostname, run it on whatever

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
132

machine the user wishes. (By default, it will run on the machine from which the
request was submitted; you can change this using the -h argument to pmrun.)

l Line 13

First, line 13 deletes all environment variables, except those specified in the keepenv
list. Since you can use environment variables to exploit security holes in UNIX
programs and shell scripts, be careful when specifying the environment variables for
a request.

l Line 14

This line sets the PATH variable explicitly to include only safe directories. Note the use
of the + operator to concatenate the values assigned to the PATH variable; + splits the
values over two lines to avoid ugly end-of-line wrapping.

l Line 15-19

This fragment ensures that the SHELL variable is only set to a safe value. If the
existing SHELL variable is already set to one of the values defined as "safe" in
safeshells, then that value is used. If not, then the SHELL is set to /bin/sh.

Note that getenv reads from the env variable; setenv and keepenv write to the
runenv variable.

l Line 20

This line sets the command's umask value to 022: data files created by the command
will have rw-r--r-- permissions, and directories will have rwxr-xr-x permissions.
Since the command will run under the root account, root will own the files.

Specify a leading zero when typing in umask values so they are interpreted as
octal numbers.

l Line 21

The command will run with a nice value of -4, which gives it a high priority relative to
other jobs on the system.

l Line 22

After setting up the job’s environment, the request is accepted and the job is run.

Check the configuration file for errors with pmcheck. For more information about using
pmcheck, see Example 1: Basics on page 124.

Try running your favorite shell, for example:

pmrun csh

In the shell, you can then enter env to list the environment variables, pwd to print the
working directory in which your request ran, or umask to display the umask value.

Example 9: Switch and case statements

The following example illustrates how you can use the switch and case statements to
implement complex policies. In this case, different users act as system administrators on

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
133

different days of the week.

Type this fragment into the /etc/opt/quest/qpm4u/policy/pm.conf file, or copy it from the
examples directory in the Privilege Manager for Unix distribution directory. Replace "dan",
"robyn" and "cory" with users from your site.

adminprogs={"ls", "hostname", "kill", "csh", "ksh", "echo"};
if(command in adminprogs) {
switch (dayname) {

case "Mon": true;
case "Wed": true;
case "Fri": adminusers={"dan", "robyn"};

break;
case "Tue": true;
case "Thu": adminusers={"robyn", "cory"};

break;
default: adminusers={};

}
if (user in adminusers) {

runuser="root"
accept;

}

When entering a switch statement, execution immediately jumps to the first case
statement that matches the argument to switch (in this case, dayname). Execution proceeds
from that point until a break statement or the end of the switch is reached. When a break
statement is reached, execution jumps immediately to the end of the switch. If no case
matches the argument to switch, execution jumps to the default statement.

Once execution has jumped to a case statement, it is unaffected by subsequent case
statements. Only a break causes execution to jump to the end of the switch statement. If
you omit a break, execution falls through to the next case statement.

Check the configuration file for errors with pmcheck. For more information about using
pmcheck, see Example 1: Basics on page 124.

Log in as one of the adminusers to see if you can run requests with pmrun (it will depend on
the current day). See switch on page 308 for further details.

Example 10: Menus

This example shows you how to present the commands a user may access as root in a
menu by implementing a menu system with four choices. If the user selects the first menu
item, he is asked to correctly type in a password before Privilege Manager for Unix runs
the adduser program. If the user selects menu items b, c or d, Privilege Manager for Unix
runs the backup, file ownership or line printer administration programs.

If the user’s request is accepted and completes, Privilege Manager for Unix prints
messages to the user’s screen specifying the requested command and user under which the
command will run. If the user makes an invalid menu choice, Privilege Manager for Unix
prints a warning message and rejects the request.

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
134

Type the following code fragment into the /etc/opt/quest/qpm4u/policy/pm.conf file, or
copy it from the examples directory in the Privilege Manager for Unix distribution
directory. Replace "dan", "robyn", and "cory" with users from your site.

if(command=="adminmenu") {
print("========= Admin Menu =========");
print("a) Add users");
print("b) Start a backup");
print("c) Change ownership of a file");
print("d) Fix line printer queues");
choice=input("Please choose one: ");

switch(choice) {
case "a":
Reject the request if the password "123456" is not entered
correctly. The user is allowed only two chances to type
the password correctly. The encrypted version of the
password seen here was generated using "pmpasswd".
If you store encrypted passwords in your config file,
make sure you turn off read permission on the file so
that no one can use a password cracking program to
guess them.

if(!getstringpasswd("m9xxg7B4.v8Ck",
"Type in the adduser password: ", 2))

reject;
runcommand="/usr/local/bin/adduser";
runuser="root";
break;

case "b":
runcommand="/usr/local/bin/dobackup";
runuser="backup";
break;

case "c":
runcommand="/etc/chown";
runuser="root";
break;

case "d":
runcommand="/usr/lib/lpadmin";
runuser="root";
break;

default:
printf("\"%s\" was not a valid choice.Sorry.\n", choice);

reject;
}

print("** Command to be run :", runcommand);
print("** User to run command as :", runuser);
accept;
}

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
135

Check the configuration file for errors with pmcheck. For more information about using
pmcheck, see Example 1: Basics on page 124.

To display the menu, enter:

pmrun adminmenu

Select the first menu item. When Privilege Manager for Unix asks you for the password,
type "123456". Privilege Manager for Unix accepts the request and attempts to run the job.

Since the commands in this example probably do not exist on your system, the job will
fail. Try substituting your own commands in each of the menu items, and test the
fragment again.

Use the while loop

To create more complex statements in the configuration file, you can use a while loop
construction. For example:

while (expression) {
<script statements>;

}

In the following example, the scripting language searches the argument list of the
command for the argument root. This is useful for allowing access to the passwd command.

count=1;
while(count < argc) {

if(argv[count] == "root")
reject;
count=count+1;

}

See while on page 309 for further details.

Use parallel lists

You can use two lists in parallel, with information from element X of one list relating to
information from element Y in the other list. In this example, the command name is related
to its full pathname. You can incorporate this technique when you require certain users to
type in a password that is different for each user.

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
136

okcommands={"ls", "sort", "pmreplay"};
okpaths={"/bin/ls", "/bin/sort", "/usr/etc/pmreplay"};
i=search(okcommands,command);

if(i==-1) {
print("Invalid Command");
reject;

} else {
runcommand=okpaths[i];
accept;

}

If the search fails (is set to -1), it rejects the request. Otherwise, the runcommand variable is
set to the permitted path and command, and it accepts the request.

Best practice policy guidelines

One Identity recommends that you keep the following guidelines in mind when building
your configuration file. Give careful thought to the environment in which the job will run.

l The directory in which the job will run should be controlled by the runcwd variable.

By default, jobs run in the same directory from which they are submitted.

l The environment variables that you consider "safe":

l Use the keepenv function to keep the "safe" environment variables and remove
all others.

l Variables such as TERM, DISPLAY, and TZ are useful to keep; the job can access
and make use of their values.

l Variables such as SHELL, PATH, IFS or LD_LIBRARY_PATH can have unspecified
effects if set improperly. To avoid problems, use keepenv to delete these
variables; use setenv to set them to safe values.

l Explicitly set the environment variables:

l Use the setenv function to set these variables.

l Always set the PATH variable explicitly. Running shell scripts or programs with a
non-standard PATH can allow users to substitute their own -- possibly
malevolent -- programs to run in place of the ones that you intended. Well-
written shell scripts set PATH themselves. Set it explicitly in the Privilege
Manager for Unix policy.

l The machine on which the job will run should be controlled by the runhost variable.

By default, jobs run on the machine from which they are submitted. To run a job on a
different machine, use the -h option of the pmrun command. If you are concerned
about where the job will run, explicitly set the runhost variable. See pmrun on page
450 for details.

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
137

l The user ID under which the job will run:

l Users typically use Privilege Manager for Unix to run jobs as root, but may
specify any account.

l The runuser variable contains the name of the user under which the job
will run.

l If you do not set runuser explicitly, the job will run under the user ID that
originally submitted it. This may be advantageous if you are using Privilege
Manager for Unix as a substitute for ssh to control who can log into a
particular machine.

l The groups in which the job will run:

l The rungroup variable stores the name of the job’s primary group, while the
rungroups variable stores a complete list of all groups to which the job belongs.

l The default is all groups to which the user submitting the job belongs.

l The command that will be run:

l The runcommand variable stores the name of the command that will be run.

l If it is not a full pathname, Privilege Manager for Unix searches the PATH
variable for the job to find the command to run (a good reason to explicitly set
PATH to something safe).

l You can have Privilege Manager for Unix run a different command from the one
asked for by the user, by setting the runcommand variable. Example 10: Menus
on page 134 displays a menu of administrative programs in response to a user
executing a pmrun adminmenu command. The user then selects one to run.

When you set runcommand, Privilege Manager for Unix automatically sets the runargv
[0] variable to the base name of the runcommand value. UNIX shells do the same thing
when you run a command.

l The arguments for the request:

l The argv list variable stores a list of user requested command names
and arguments. argv[0] is the command name, argv[1] is the first
argument, and so on.

l By changing the runargv variable, you can set the arguments to the command.
This allows you to limit or add to the arguments requested by the user.

If the command is a shell script, or if you wish to cause the command to be run
through a shell, be careful with the argument list. By adding semicolons into an
argument, you can completely change the behavior of a command. For example, if
you run this command:

csh -c 'ls /tmp'

which lists the files in /tmp, a malicious user might type:

csh -c 'ls /tmp;rm /*'

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
138

Ensure that your programs and/or scripts can handle strange arguments safely.

l The type of logging done for the request:

l Set the iolog variable to a unique pathname; later replay the session
using pmreplay.

l A log noting that the request was either accepted, rejected, or completed is
stored by default in /var/opt/quset/qpm4u/pmevents.db. For more information
about logging, see Event logging on page 153.

Multiple configuration files and read-only
variables

You can split up the configuration file into separate parts to reduce clutter. Use the include
statement to hand off control to a subsidiary configuration file. While in the subsidiary
configuration file, if an accept or reject occurs, control never returns to the main file.
However, if no accept or reject occurs, once the end of the subsidiary configuration file has
been reached, control returns to the parent file for further processing. Control resumes
immediately after the include statement.

When handing off control to a subsidiary configuration file whose contents are controlled by
a questionable person, it may be desirable to fix certain Privilege Manager for Unix
variable values so that they cannot be changed by the subsidiary file. Use the readonly
statement for this purpose.

For example, you may have an Oracle database administrator, who needs to administer
certain Oracle programs. Each of those programs is to run as the "oracle" user. You would
like the database administrator to be able to grant or deny access to these programs and
this account without your involvement, but you certainly do not want to give this person
power over non-Oracle parts of the system.

The following configuration file fragment hands off control to a subsidiary configuration file
called pmoracle.conf, and ensures that if an accept is done within this file, the job being
accepted can only run as the oracle user.

oraclecmds = {"oradmin", "oraprint", "orainstall"};
if(command in oraclecmds){

runuser = "oracle";
readonly {"runuser"};
include "/etc/pmoracle.conf";
reject;

}

The argument passed to readonly is a list of variable names (here, we have only specified
one variable).

Also, the reject statement after the include ensures that if the pmoracle.conf configuration
file does not accept or reject the job, this fragment will explicitly reject it. Of course, if the
pmoracle.conf file accepts the job, the reject in this fragment will never be reached.

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
139

You can give the database administrator access to edit the pmoracle.conf file by entering
"pmrun pmoracle.conf" if you include the following fragment. It calls the secure pmvi text
editor (supplied with Privilege Manager for Unix), which allows the user to edit the file
whose name is given on the command line, but will not allow the user to read or write any
other file, nor to run any subprocesses from within the editor.

The following example sets:

l the command to be run (/opt/quest/bin/pmvi)

l its arguments ("pmvi /etc/pmoracle.conf")

l the user it will run as ("root")

l and accepts the request

if(command == "pmoracle.conf" && user == "dba_login_name")
{

runcommand = "/opt/quest/bin/pmvi";
runargv = split("pmvi /etc/pmoracle.conf");
runuser = "root";
accept;

}

Mail

You may use the configuration file to send mail messages when certain actions occur. The
following fragment sends mail to root whenever the adduser program runs:

if(command=="adduser") {
system("mail root",

"pm: adduser was run as root by " + user + "\n");
}

Environmental variables

You can use environment variables to turn on or off special features of Privilege Manager
for Unix configuration files. In the following example, the list of Privilege Manager for Unix
variables is printed to the user's screen if the DEBUG environment variable is set to "yes".
This is useful when debugging a configuration file. Simply set the DEBUG variable to "yes" in
your shell, then run pmrun. Privilege Manager for Unix notices the DEBUG variable, and calls
the printvars function.

if(getenv("DEBUG")=="yes")
printvars();

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
140

NIS netgroups

If you have a large site where you add and remove hosts frequently, you may already be
using netgroups to associate a group name with a set of hosts. The Privilege Manager for
Unix innetgroup function inquires if a named host is a member of a named netgroup.

For example, you can reject requests originating from any machine that is not in the
netgroup myhosts as follows:

if(!innetgroup("myhosts", host))
reject;

Specify trusted hosts

You can reject all requests that do not originate from your domain; that is, specify only the
hosts that you trust to issue requests by using the following:

if(submithost !in {"*.quest.com"})
reject;

Configuring firewalls

When the agent and policy server are on different sides of a firewall, Privilege Manager for
Unix needs a number of ports to be kept open. By default, Privilege Manager for Unix can
use ports in the 600 to 31024 range, but when using a firewall, you may want to limit the
ports that can be used. See Restricting port numbers for command responses on page 142
for more information.

This section describes

l how Privilege Manager for Unix uses ports from both the reserved and non-reserved
port ranges during a session

l how to configure Privilege Manager for Unix over a firewall and, optionally, Network
Address Translation (NAT)

Privilege Manager for Unix port usage

For each Privilege Manager for Unix session, the client (pmrun) and agent (pmlocald) use
one port from both the reserved and non-reserved ranges. The policy server (pmmasterd)
uses one port from its non-reserved range. Each agent can use the same port ranges as
they are on separate machines and need only be large enough to support the maximum

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
141

number of concurrent sessions on that agent. On the other hand, the policy server needs a
port range large enough to support all sessions across all agents (minimum of one non-
reserved port per session).

This diagram shows the minimum port ranges required for a single Privilege Manager for
Unix session:

Figure 7: Privilege Manager for Unix port usage

Connection 4 is used only to send back the exit status if I/O logging is not enabled.

Restricting port numbers for command
responses

If commands involve communication through a firewall, you can restrict the TCP/IP port
numbers on which responses to pmrun commands are returned.

One Identity recommends that you assign a minimum of six ports to Privilege Manager
for Unix in the reserved ports range (600 to 1023) and twice that number of ports in
the non-reserved ports range (1024 to 65535). The more agents you have, the more
ports you need.

To set the reserved port range

1. Add the following line to the /etc/opt/quest/qpm4u/pm.settings file:

setreserveportrange <lowportnumber> <highportnumber>

where <lowportnumber> is first port in the range and <highportnumber> is the last port
in the range.

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
142

<lowportnumber> and <highportnumber>must be port numbers between 600 and 1023.
For example:

setreserveportrange 600 612

To set the non-reserved port range

1. Add the following line to the /etc/opt/quest/qpm4u/pm.settings file:

setnonreserveportrange <lowportnumber> <highportnumber>

<lowportnumber> and <highportnumber>must be port numbers between 1024 and
65535. For example:

setnonreserveportrange 31000 65535

See PM settings variables on page 286 for more information about modifying the Privilege
Manager for Unix configuration settings.

Configuring pmtunneld

pmtunneld adds an additional layer of security by acting as a proxy for pmrun.
Communication sent from pmlocald is transmitted using port number 12347, by default, and
received by pmtunneld. pmtunneld then transmits the data to pmrun.

In the following example, the firewall is configured to allow the following connections:

l One incoming connection from external host (EXT1) reserved port range (600 - 612)
to internal host (INT1) port 12345.

l One outgoing connection from internal host (INT1) non-reserved port range (31000 -
31024) to external host (EXT1) port 12347.

Figure 8: pmtunneld configuration

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
143

To configure pmtunneld, in the /etc/opt/quest/qpm4u/pm.settings file, specify the hosts that
require pmlocald to use a fixed port when communicating with pmrun and the fixed port that
pmlocald uses when communicating with pmrun.

In this example, you configure the external host (EXT1) by adding these lines to the
/etc/opt/quest/qpm4u/pm.settings file:

tunnelport 12347
pmtunneldenabled yes

In this example, you configure the internal host (INT1) by adding these lines to the
pm.settings file:

tunnelrunhosts EXT1
tunnelport 12347

Note that tunnelrunhosts can contain wild cards, such as, *.mydomain.com.

To allow commands to run on the external host, EXT1 in this example, create a firewall rule
to allow pmmasterd to connect from the non-reserved port range to the pmlocald port on the
external agent.

See PM settings variables on page 286 for more information about modifying the Privilege
Manager for Unix configuration settings.

Configuring Network Address Translation
(NAT)

To configure Privilege Manager for Unix to allow the use of Network Address Translation
(NAT), you must add both the external and internal IP address of the firewall to
tunnelrunhosts list in the /etc/opt/quest/qpm4u/pm.settings file.

See PM settings variables on page 286 for more information about modifying the Privilege
Manager for Unix configuration settings.

Configuring Kerberos encryption

You can configure Privilege Manager for Unix to use Kerberos encryption to authenticate
and to exchange encryption key information

To configure Privilege Manager for Unix to use Kerberos encryption, edit or insert the
following line in the /etc/opt/quest/qpm4u/pm.settings file:

kerberos yes

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
144

Also, to use Kerberos with Privilege Manager for Unix, ensure that suitable Service
Principal Names (SPNs) are registered. Using the generic host service-type, configure the
SPNs like this:

host/sun17.quest.com

Substitute your own host names.

If the SPN has been registered using the fully qualified DNS name, you can abbreviate the
SPNs to the service-type, such as:

host

Specify the service principal names using the mprincipal and lprincipal settings in the
pm.settings file. For example, on an agent with a host name of sun17.quest.com, and a SPN
registered as db_serve1.quest.com, specify:

mprincipal host
lprincipal host/db_server1.quest.com

You may need to modify these other settings according to your Kerberos configuration:

Kerberos Setting Description

keytab Location of the keytab file.

Default: /etc/opt/quest/vas/host.keytab

krb5rchache Location of the Kerberos cache.

Default: /var/tmp

Location of the Kerberos configuration file.

Default: /etc/opt/quest/vas/vas.conf

Table 18: Other Kerberos configuration settings

See PM settings variables on page 286 for more information about modifying the Privilege
Manager for Unix configuration settings.

Configuring certificates

You can enable configurable certification for use with Privilege Manager for Unix.
Configurable certification is a method of proprietary certification based on the system
hardware ID, MD5 checksums and DES encryption.

Use the pmkey command to generate and install certificates. For example, to generate a
new certificate and put it into the specified file, enter:

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
145

pmkey -a <filename>

To install the newly generated certificate from the specified file, enter:

pmkey -i <filename>

Enable configurable certification

To enable configurable certification

1. Ensure that you have configured a Privilege Manager for Unix policy server and a
Privilege Manager for Unix client.

2. Add the following statement to the /etc/opt/quest/qpm4u/pm.settings file on
each host:

certificates YES

3. To generate a key on the Privilege Manager for Unix policy server, enter:

pmkey –a <policy server filename>

When prompted, enter a phrase or keyword.

4. To install the key on the Privilege Manager for Unix policy server, run

pmkey -i <policy server filename>

You must enter the same filename in both the -a and -i commands shown above.

5. To generate a key on each Privilege Manager for Unix client, enter:

pmkey –a <client filename>

When prompted, enter a phrase or keyword. Note: you must use the same phrase or
keyword to generate the client and policy server certificates.

6. To install the key on the Privilege Manager for Unix client, run

pmkey -i <client filename>

You must enter the same filename in both the -a and -i commands shown above.

7. Copy the key file you have created on each of the Privilege Manager for Unix clients
to the Privilege Manager for Unix policy server.

8. Copy the key file you have created on the Privilege Manager for Unix policy server to
the Privilege Manager for Unix client.

The keys are located in /etc/opt/quest/qpm4u/.qpm4u/.keyfiles/<key filename>.

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
146

9. On the Privilege Manager for Unix policy server, enter:

pmkey -i <client filename>

10. On the Privilege Manager for Unix client, enter:

pmkey -i <policy server filename>

Configurable certification is now enabled.

By default, pmkey certifies the pass phrase when installing the keyfile for other hosts.
If you do not want pmkey to certify the pass phrase when installing the keyfile for
other hosts, use -f in the pmkey -i command, like this:

pmkey -i <keyfile> -f

Configuring alerts

Alerts enable you to specify commands that raise an alert if entered by a user, and the
action you want Privilege Manager for Unix to take.

Use the alertkeyaction variable to specify the action Privilege Manager for Unix is to
take when an alert is raised. The default action logs the alert and allows the command
to continue.

Enter alertkeysequence in the policy as a list of regular expressions, like this:

alertkeysequence={"^rm.*", "/rm.*", ".*xterm"};

Other valid alert actions are:

l log

l reject

l or any valid string

For example:

if (user=="root")
{

alertkeyaction="ignore";
}

else if (user=="john")
{

alertkeyaction="alert";
}

else if (user=="dave")
{

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
147

alertkeyaction="trace";
}

else
{

alertkeyaction="reject";
}

If an event raises an alert, Privilege Manager for Unix logs an AlertRaised event log. The
alertkeyaction variable is also included in the log as part of the event.

If the alertkeyaction variable is set to reject, Privilege Manager for Unix cancels the
command, terminates the user’s session, and displays a rejection message.

If the alertkeyaction variable is not set to reject, Privilege Manager for Unix allows the
command to run and logs it in the event log. The example shown above shows how you can
enter different strings for different users. This enables you to use the alertkeyaction
variable as a filter to search the event log for these events.

alertkeyaction logging is enabled even if iologging is disabled. If iologging is disabled, a
new session is started with pmmasterd for each alertraised event.

By default, alertraised events are not displayed in pmlog. To view the alertraised event,
use the -l parameter or the -d parameter. For example:

pmlog -l

Alert events have the same unique ID as the Privilege Manager for Unix session from
which they were generated. This enables you to identify alert events raised during a
specific session.

Use pmcheck to check a given string against any expression defined in the
alertkeypatterns list:

pmcheck -a"<string>"<command>

For example,

pmcheck -a "rm /etc/opt/quest/qpm4u/pm.settings" ksh

Configuring Pluggable Authentication
Method (PAM)

Use authenticate_pam to define which users you want to authenticate by means of PAM
(Pluggable Authentication Method) APIs.

The operating system has configuration files, usually called /etc/pam.conf, that specify
which security databases to use to authenticate users, such as LDAP, Windows 2000 Active
Directory, and various PKI implementations.

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
148

The service parameter identifies the name of the PAM service to use to authenticate users.
The service parameter can be any valid service name configured in the PAM system
configuration and defaults to "login".

For more information on how to configure PAM with Privilege Manager for Unix, consult the
documentation for your platform.

Utilizing PAM authentication

Syntax

authenticate_pam (user,[<service>])

where <service> is the PAM service to use, such as sshd.

Examples

To utilize PAM authentication, add the following function to your policy file:

if (user=="paul" && basename(command)=="useradd") {
if (!authenticate_pam(user, "sshd")) { reject; }
runuser="root";
accept;

}

This function returns 0 to indicate failure and 1 to indicate success.

Related Function

authenticate_pam_toclient

Related Topics

authenticate_pam

Authenticate PAM to client

Syntax

authenticate_pam_toclient (user,[<service>])

where <service> is the PAM service to use, such as sshd.

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
149

Description

authenticate_pam_toclient causes pmmasterd to send a request to pmrun to perform the
authenticate_pam command on the pmrun host.

This function is only available on platforms that have native support for PAM.

Example

To utilize PAM authentication, add the following function to your policy file:

if (user=="paul" && basename(command)=="useradd") {
if (!authenticate_pam_toclient(user, "sshd")) { reject; }

runuser="root";
accept;

}

This function returns 0 to indicate failure and 1 to indicate success.

Related Function

authenticate_pam

Related Topics

authenticate_pam_toclient

Privilege Manager for Unix 7.1 Administration Guide

Advanced Privilege Manager for Unix Configuration
150

10

Administering Log and Keystroke
Files

Privilege Manager for Unix allows you to control what is logged, as well as when and where
it is logged. To help you set up and use these log files, the topics in this section explore
enabling and disabling logging, as well as how to specify the log file locations.

Privilege Manager for Unix includes three different types of logging; the first two are
helpful for audit purposes:

l keystroke logging, also referred to as I/O logging

Keystroke logs record the user’s keystrokes and the terminal output of any sessions
granted by Privilege Manager for Unix.

l event logging

Event logs record the details of all requests to run privileged commands. The details
include what command was requested, who made the request, when the request was
sent, what host the request was submitted from, and whether the request was
accepted or rejected.

l error logging

You can configure some aspects of the event and keystroke logging by means of the
security policy on the policy servers. What you can configure and how you configure it
depends on which type of security policy you are using on your policy server --
pmpolicy or sudo.

Related Topics

Security policy types

Controlling logs

The following variables are used to control the logging of program input and output through
Privilege Manager for Unix.

Privilege Manager for Unix 7.1 Administration Guide

Administering Log and Keystroke Files
151

Variable Explanation

iolog If set to a filename, the iolog variable logs all of the
information from the logstdin, logstdout, and
logstderr variables to the specified filename.

logstderr If set to true, the logstderr variable logs any error
responses.

logstdin If set to true, the logstdin variable logs all inform-
ation coming in from standard input.

If set to true, the logstdout
variable logs all information
being displayed to standard
output.

Table 19: Logging variables

For details about these logging variables, refer to Global output variables on page 243.

To log the input, output and error I/O streams from a request, set logstdin, logstdout,
and logstderr to true. Set iolog to the name of the log file. After Privilege Manager for
Unix completes the request, you can use the pmreplay command to replay the session
that was logged.

You can limit the amount of data logged for each stream. This avoids filling up the I/O logs
with large amounts of output from benign commands, such as when using cat or tail to
display a large file. You can limit the I/O logging to the first n bytes of the output. For
example, to log only the first 500 bytes of stdout, enter:

iolog_opmax=500;

The following example ensures that whenever you run the adduser program through
Privilege Manager for Unix, it logs all input and output in the specified file:

if(command=="adduser") {
iolog="/var/log/iolog/" + user + mktemp("_XXXXXX");
logstdin=true;
logstdout=true;
logstderr=true;
runuser="root";
accept;

}

Local logging

The location of the error logs for the Privilege Manager for Unix components, pmrun,
pmlocald, and pmmasterd, is specified using keywords in the pm.settings file. Enter the

Privilege Manager for Unix 7.1 Administration Guide

Administering Log and Keystroke Files
152

following to specify that you want the error logs written to the /var/adm directory:

pmlocaldlog /var/adm/pmlocald.log
pmmasterdlog /var/adm/pmmasterd.log
pmrunlog /var/adm/pmrun.log

Alternatively, you can enable UNIX syslog error logging in the pm.settings file, by
specifying:

syslog YES

Use one of the following keywords to specify which syslog facility to use:

l LOG_KERN

l LOG_USER

l LOG_MAIL

l LOG_DAEMON

l LOG_AUTH (the default)

l LOG_LPR

l LOG_NEWS

l LOG_UUCP

l LOG_CRON

l LOG_LOCAL0 through LOG_LOCAL7

For example, to enable syslog error logging using the LOG_AUTH facility, enter in the
pm.settings file:

syslog YES
facility LOG_AUTH

See PM settings variables on page 286 for more information about modifying the Privilege
Manager for Unix configuration settings.

Event logging

Event logs are enabled by default for all requests sent to the Privilege Manager for Unix
Policy Servers. The default location of the event log file is
/var/opt/quest/qpm4u/pmevents.db.

When using the pmpolicy type, you can change the location of the event log, or disable
event logging for a specific request by modifying the eventlog policy variable. For
example, to disable event logging for all pmlist commands, add the following code to your
security policy:

Privilege Manager for Unix 7.1 Administration Guide

Administering Log and Keystroke Files
153

if (basename(command) == "pmlist") { eventlog=""; }

The following pmpolicy variables affect event log settings:

Variable Data
type

Description

eventlog string The name of the file in which events
(acceptances, rejections, and comple-
tions) are logged. (Default is
/var/opt/quest/qpm4u/pmevents.db.)

This must be a full pathname starting
with a / (slash). For example:

eventlog = "/var/logs/pmevents.db";

If the log file name you specify in the
policy file cannot be opened, Privilege
Manager for Unix automatically logs all
events in the default log file.

See also eventlog on page 248.

logomit list Specifies the names of variables to omit
when logging to an event log (no
default). Use this to reduce the amount
of disk space used by event logs.

See also logomit on page 254.

Specify a local variable to add to the
event log. (Refer to Operators and
expressions on page 186 for more
information about export.)

Table 20: Event logging policy variables

For example, enter the following to specify that you want to:

l record event log in /var/adm/pmevents.db

l not include the env and runenv variables in the logs

eventlog = "/var/adm/pmevents.db";
logomit = {"env","runenv"};

Privilege Manager for Unix 7.1 Administration Guide

Administering Log and Keystroke Files
154

Keystroke (I/O) logging

Once your 30-day trial license has expired, One Identity requests that you obtain a
Keystroke Logging license to remain in compliance. See Privilege Manager for Unix
licensing on page 15 for details.

You can enable keystroke logging using the iolog variable. If this variable is not defined or
is an empty string, keystroke logging is disabled. Otherwise, specify the full path to the
keystroke log using iolog variable. See iolog on page 249 for details.

If you use the default profile-based policy, iolog is defined in the
profileBasedPolicy.conf file as:

iolog=mktemp("/var/opt/quest/qpm4u/iolog/"
+ profile
+ "/"
+ user
+ "/"
+ basename(runcommand)
+ "_"
+ strftime("%Y%m%d_%H%M")
+ "_XXXXXX");

You can enable keystroke logging on a per profile basis by editing the profile and
shellprofile files, and setting the pf_keystrokelogging variable to true or false.

The following variables affect keystroke log settings when using the pmpolicy type:

l iolog

l iolog_encrypt

l iolog_opmax

l iologhost

l logomit

l logstderr

l logstdin

l logstdout

l log_passwords

For details about these variables, refer to the Global output variables on page 243.

Keystroke (I/O) logging policy variables

You can control keystroke (I/O) logging behavior using the following policy variables.

Privilege Manager for Unix 7.1 Administration Guide

Administering Log and Keystroke Files
155

Variable Data
type

Description

iolog string The name of the file in which input, output, and error
output is logged. This must be a full pathname
starting with a / (slash). To avoid overwriting existing
I/O log files, set the iolog variable with a mktemp
function call.

iolog_encrypt boolean Enables encryption of I/O logs: To enable encryption,
set:

iolog_encrypt = true;

Log files are encrypted with AES; view them with
pmreplay.

iolog_errmax integer Limits the amount of text logged for stderr for each
command.

iolog_opmax integer Limits the amount of text logged for stdout for each
command. For example, if iolog_opmax is set to 500
and you enter:

cat filename1

it only logs the first 500 bytes of output produced by
this command.

log_passwords boolean Specifies whether passwords are logged to the
keystroke log. The default setting logs passwords.
See log_passwords on page 253 for details.

logstderr boolean Specifies if error output is logged; default is "true".

logstdin boolean Specifies whether input is logged; default is "true".

logstdout boolean Specifies whether output is logged; default is "true".

Table 21: Keystroke logging policy variables

All boolean values default to "true".

Privilege Manager for Unix 7.1 Administration Guide

Administering Log and Keystroke Files
156

Example

iolog=mktemp(”/opt/quest/qpm4u/logs/”+”user”+”_”+basename(command)
+”_XXXXXX”);

iolog_encrypt = true;
iolog_opmax = 500;
iolog_errmax = 200;
logstderr = false;
logstdin = true;
logstdout = true;
log_passwords = false;

For details about the keystroke logging variables, refer to Global output variables
on page 243.

Central logging with Privilege Manager
for Unix

Privilege Manager for Unix can configure central logging for I/O and event logs using the
iologhost and eventloghost policy variables.

pmmasterd uses port number 12345 by default to communicate with the log server.

A host that is configured as a centralized log server must have the client's keyword added
to the pm.settings file to specify which policy servers may forward their I/O and event log
information to this log server.

Figure 9: Configuring central logging for I/O and event Logs

Privilege Manager for Unix 7.1 Administration Guide

Administering Log and Keystroke Files
157

In this example, master1, master2, master3, and logmaster are all Privilege Manager for Unix
policy servers (pmmasterd).

logmaster is configured as the centralized log host for I/O and event logs for master1,
master2 and master3. To send I/O and event log information to logmaster, the policy must
include the following statements:

iologhost = "logmaster";
eventloghost = "logmaster";

If for any reason (such as a system outage) the logs cannot be forwarded to the central
logging host (logmaster in the above example), log files are stored locally on the
authenticating policy server (master1, master2, or master3 in the above example). The
location of the log files is specified by the tmplogdir policy variable, which defaults to
var/opt/quest/qpm4u/iolog/queue.

The pm.settings file for logmastermust include the clients keyword. For example:

clients master1 master2 master3

Related Topics

PM settings variables

tmplogdir

Controlling log size with Privilege
Manager for Unix

An effective strategy for controlling the size of the log file in Privilege Manager for Unix
is to limit the amount of information sent to the logs. Instead of logging keystrokes for
every command, you might construct a policy that only captures keystrokes for
sensitive commands.

You can use policy variables to limit the information sent to the log files.

Variable Data
type

Description

iolog_encrypt boolean Enables I/O logs encryption; default is "true".

Log files are encrypted with AES; view them with
pmreplay.

iolog_errmax integer Limits the amount of text logged for stderr for each
command.

Table 22: Size-controlling logging variables

Privilege Manager for Unix 7.1 Administration Guide

Administering Log and Keystroke Files
158

Variable Data
type

Description

iolog_opmax integer Limits the amount of text logged for stdout for each
command. For example, if iolog_opmax is set to 500
and you enter the following command:

cat filename1

it only logs the first 500 bytes of output produced by
this command.

logomit list Specifies the names of variables to omit when logging
to an event log (no default). Use this to reduce the
amount of disk space used by event logs.

logstderr boolean Specifies if error output is logged; default is "true".

logstdin boolean Specifies whether input is logged; default is "true".

logstdout boolean Specifies whether output is logged; default is "true".

Viewing the log files using a web
browser

If you are running Privilege Manager for Unix, you can view events using Management
Console for Unix, which provides an intuitive web-based console for managing UNIX hosts.

Refer to the One Identity Management Console for Unix Administration Guide for details
about using the mangement console.

Viewing the log files using command
line tools

If you are not running Privilege Manager for Unix with Management Console for Unix, or if
you prefer to use command line tools, you can list events and replay log files directly from
the primary policy server using the pmlogsearch, pmreplay, and pmremlog commands.

pmlogsearch

pmlogsearch is a simple search utility based on common criteria. Run pmlogsearch on the
primary server to query the logs on all servers in the policy group. pmlogsearch provides a
summary report on events and keystroke logs matching at least one criteria. pmlog
provides a more detailed report on events than pmlogsearch.

Privilege Manager for Unix 7.1 Administration Guide

Administering Log and Keystroke Files
159

Hostnames may appear in the event logs and keystroke log files in either fully qualified
format (myhost.mycompany.com) or in short name format (myhost), depending on how
hostnames are resolved and the use of the short name setting in the pm.settings file. To
ensure that either format is matched, use the short host name format with an asterisk
wildcard (myhost*) when specifying a hostname search criteria.

See pmlogsearch on page 427 for more information about the syntax and usage of the
pmlogsearch command.

pmlogsearch performs a search across all policy servers in the policy group and returns a
list of events (and associated keystroke log file names) for requests matching the specified
criteria. You specify search criteria using the following options (you must specify at least
one search option):

Command Description

--after "YYYY/MM/DD
hh:mm:ss"

Search for sessions initiated after the specified date and
time.

--before "YYYY/MM/DD
hh:mm:ss"

Search for sessions initiated before the specified date
and time.

--host hostname Search for sessions that run on the specified host.

--result accept|reject Return only events with the indicated result.

--text keyword Search for sessions containing the specified text.

--user username Search for sessions by the specified requesting user.

Table 23: Search criteria options

The following pmlogsearch options support the use of wildcards, such as * and ?:

l –-host

l –-user

To match one or more characters, you can use wild card characters (such as ? and *) with
the --host, --text, and --user options; but you must enclose arguments with wild cards in
quotes to prevent the shell from interpreting the wild cards.

If there is a keystroke log associated with the event, it displays the log host and pathname
along with the rest of the event information.

The following example lists two events with keystroke (IO) logs:

pmlogsearch --user sally
Search matches 2 events
2013/03/16 10:40:02 : Accept : sally@qpmsrv1.example.com

Request: sally@qpmsrv1.example.com : id
Executed: root@qpmsrv1.example.com : id
IO Log: qpmsrv1.example.com:/opt/quest/qpm4u/iologs/demo/sally/id_20120316_1040_

ESpL6L

Privilege Manager for Unix 7.1 Administration Guide

Administering Log and Keystroke Files
160

2013/03/16 09:56:22 : Accept : sally@qpmsrv2.example.com
Request: sally@qpmsrv2.example.com : id
Executed: root@qpmsrv2.example.com : id
IO Log: qpmsrv2.example.com:/opt/quest/qpm4u/iologs/demo/sally/id_20120316_0956_

mrVu4I

pmreplay

You can use the pmreplay command to replay a keystroke log file if it resides on the local
policy server.

To replay the log, run:

pmreplay <path_to_keystroke_log>

For example, the following command replays the first ls –l /etc log from the
previous example:

pmreplay /opt/quest/qpm4u/iologs/demo/sally/id_20120316_1040_ESpL6L

pmremlog

If the keystroke log resides on a remote policy server, you can use the pmremlog command
with the –h <remote_host> and –p pmreplay options to remotely replay a keystroke log file.
You specify the path argument to the remote pmreplay after the -- flag.

For example, enter the following command all on one line:

pmremlog -h qpmsrv2 -p pmreplay -- /opt/quest/qpm4u/iologs/demo/sally/id_20120316_
0956_mrVu4I

Host names may appear in the event logs and keystroke log files in either fully qualified
format (myhost.mycompany.com) or in short-name format (myhost), depending on how host
names are resolved and the use of the shortnames setting in the pm.settings file. To ensure
that either format is matched, when you specify a host name search criteria, use the short-
host name format with an asterisk wild card (For example, myhost*).

Listing event logs

You can list the events that are logged when you run a command, whether accepted or
rejected by the policy server.

Keystroke logs are related to events. When you run a command, , such as pmrun whoami,
the policy server either accepts or rejects the command based on the policy. When the
policy server accepts the command, it creates an event and a corresponding keystroke log.
If it rejects the event, it does not create a keystroke log. In order to view a keystroke log,
you must first list events to find a particular keystroke log.

Privilege Manager for Unix 7.1 Administration Guide

Administering Log and Keystroke Files
161

One Identity recommends that you use Management Console for Unix for viewing
event logs and replaying keystroke logs. The mangement console provides
comprehensive reporting tools and an intuitive user interface for easy navigation of
the event and keystroke log data. However, you can also use command line utilities to
display a list of events.

The pmlog command displays event log entries, such as events by date and time, host,
user, run user, command, and result.

To display a list of events from the command line on the policy server

1. From the command line, enter:

pmlog --after "2011/05/06 00:00:00" –-user "tuser"

pmlog provides direct and flexible access to the event logs on the local policy server
and is capable of complex queries.

If you run a command, you might see output similar to the following which indicates
the policy server has successfully accepted or rejected commands:

Accept 2011/05/11 13:20:04 tuser@ myhost.example.com -> root@
myhost.example.com

whoami
Command finished with exit status 0

Accept 2011/05/11 14:05:58 tuser@ myhost.example.com -> root@
myhost.example.com

whoami
Command finished with exit status 0

Reject 2011/05/11 14:06:17 tuser@ myhost.example.com
Fakecmd

The following pmlog options support the use of wildcards, such as * and ?:

l –-user

l –-runuser

l –-reqhost

l –-runhost

l –-masterhost

You can also use the pmremlog command on the primary policy server to run pmlog on
secondary policy servers. For example:

pmremlog –h polsrv2 –p pmlog -- --user myuser –-command sh

Related Topics

pmlog

pmremlog

Privilege Manager for Unix 7.1 Administration Guide

Administering Log and Keystroke Files
162

Backing up and archiving event and
keystroke logs

Use the pmlogadm program to perform backup or archive operations on a policy server's
event log database. Because Privilege Manager for Unix stores keystroke logs in individual
flat files on the policy server, you may use standard Unix commands to back up or archive
them. Make sure the keystroke log files are not associated with active sessions prior to
backup or archive.

Disabling and enabling services

While pmlogadm can perform the backup and archive operations on a live event log
database, for best results we recommend that you follow these steps prior to performing a
backup or archive.

1. Stop the pmserviced and pmlogsrvd services.
This example shows how to disable services on Redhat Linux systems:

service pmserviced stop
Stopping pmserviced service: done
service pmlogsrvd stop
Stopping pmlogsrvd service: done

2. Ensure there are no running pmmasterd processes:

ps -ef | grep pmmasterd

A running pmmasterd process indicates that there may be an active Privilege Manager
for Unix session.

This procedure also allows you to safely backup or archive any keystroke log files. Once
the backup or archive operation has completed, remember to restart the pmserviced and
pmlogsrvd services.

This example shows how to restart the services on Redhat Linux systems:

service pmlogsrvd start
Starting pmlogsrvd service: done
service pmserviced start
Starting pmserviced service: done

Backing up event logs

The pmlogadm backup command creates a clean backup copy of your event log database.

This example performs a backup of the current event log database, placing the copy in the
/backup directory:

Privilege Manager for Unix 7.1 Administration Guide

Administering Log and Keystroke Files
163

pmlogadm backup /var/opt/quest/qpm4u/pmevents.db /backup
5 / 208 pages complete
10 / 208 pages complete
...
205 / 208 pages complete
208 / 208 pages complete

Backing up keystroke logs

Privilege Manager for Unix stores the keystroke logs in individual files and do not require
any special commands for processing.

This example uses the unix cp command to recursively copy the keystroke logs to the
/backup directory:

cp -r /var/opt/quest/qpm4u/iolog /backup

Archiving event logs

The pmlogadm archive command creates an archive of old event logs and removes the old
event logs from the current database. The following example archives logs for all events
that occurred before April 1, 2014 from the current event log database, creating an archive
database in the /archive/2014Q1 directory.

If you omit the --no-zip option, pmlogadm also creates a tar-gzip'ed archive of the
database files.

pmlogadm archive /var/opt/quest/qpm4u/pmevents.db 2014Q1 \
 --dest-dir /archive --no-zip --before "2014-04-01 00:00:00"
Archive Job Summary

Source Log : /var/opt/quest/qpm4u/pmevents.db
 Archive Name : 2014Q1
Destination Dir : /archive

 Zip Archive : No
 Cut off time : 2014/04/01 00:00:00

No pmlogsrvd pid file found, assuming service is not running.
X events will be archived.
Adding events to the archive.
Verifying archive.
Archive verification completed successfully. Removing events from source log.
Archive task complete.

Archiving keystroke logs

You can use the pmlog command with some carefully chosen options to get a list of
keystroke logs associated with the event logs you archive. In this example, you process
the list generated by pmlog, with the Unix xargs and mv commands to move the keystroke
logs into the /archive/2014Q1/iolog directory.

Privilege Manager for Unix 7.1 Administration Guide

Administering Log and Keystroke Files
164

mkdir /archive/2014Q1/iolog
pmlog -f /archive/2014Q1/archive.db \
 -c "defined iolog && length(iolog) != 0" -p iolog \
 | xargs -i{} mv {} /archive/2014Q1/iolog

The usage of the xargs command may differ depending on your platform.

Privilege Manager for Unix 7.1 Administration Guide

Administering Log and Keystroke Files
165

11

InTrust Plug-in for Privilege
Manager for Unix

Quest® InTrust for Active Directory provides a centralized auditing point allowing you to
collect and report on the audit data from Privilege Manager for Unix as well as many other
data sources you may have in your IT infrastructure.

Figure 10: Audting with InTrust Plug-in

InTrust for Active Directory auditing capabilities allow you to collect and report on the audit
data from your Privilege Manager for Unix Security system. Featuring a fully automated
workflow, InTrust for Active Directory helps you:

l Gather the Privilege Manager for Unix event logs from the policy servers running on
several different platforms

l Consolidate, store, and analyze the gathered data

l Create reports on various aspects of your Privilege Manager for Unix security
system operation

Privilege Manager for Unix 7.1 Administration Guide

InTrust Plug-in for Privilege Manager for Unix
166

InTrust for Active Directory provides reports on the following Privilege Manager for Unix
System areas:

l All events

l Elevated privilege events

l All events grouped result

l Out of band events

l Rejected events

InTrust Plug-in requirements

InTrust for Active Directory supports Privilege Manager for Unix version 5.5 and above.

You can collect data from Privilege Manager for Unix hosts running on any of the UNIX
platforms supported by InTrust.

To use the MSI installer for the InTrust Reporting Pack, your InTrust Server must use the
WindowsSQL Server 2005 as its back-end database.

Installing InTrust Plug-in components

To configure InTrust for Privilege Manager for Unix you must install and configure several
components separately. The diagram below shows the major components for the InTrust
for Active Directory Plug-in.

Figure 11: InTrust Plug-in components

To install and configure the InTrust for Active Directory Plug-in components

1. Install Privilege Manager for Unix and identify which logs you wish to audit.

2. Install and configure the pmintrust.sh script to run as the root user to extract the
relevant data.

Privilege Manager for Unix 7.1 Administration Guide

InTrust Plug-in for Privilege Manager for Unix
167

One Identity recommends that you set up a daily cron job to run “pmrun
pmintrust.sh” as the pmpolicy service user.

3. Install an InTrust Agent on the Privilege Manager for Unix Policy Server.

4. Configure the InTrust Server: Finding, Gathering, and Storing.

5. Gather Data.

6. Configure the InTrust Server: Reporting.

InTrust Plug-in installation
prerequisites

Before you install the InTrust for Active Directory components:

l Install and register an InTrust agent on the Privilege Manager for Unix policy server
machine for the collection of syslog messages.

For more information on this process, refer to the InTrust Preparing for Auditing and
Monitoring Linux document.

Configuring the policy server for the
InTrust Plug-in

Run the pmintrust.sh script as the root user.

You might need to edit pmintrust.sh to ensure it can find all relevant event log files.

The script outputs event log data in a format that the InTrust Agent can handle. When the
script runs, it creates a separate file for InTrust called /tmp/pm_evlog.intrust containing a
plain text version of the events stored in the event log files.

To configure the policy server for the InTrust Plugin

1. Extract the pmintrust.tgz archive, located in the utilities directory of the Privilege
Manager for Unix distribution media, to the /tmp directory.

gzip –dc pmintrust.tgz | tar xvf - –C /tmp
pmintrust/
pmintrust/pmpolicy.crontab
pmintrust/root.crontab
pmintrust/pmintrust.profile
pmintrust/pmintrust.sh

Privilege Manager for Unix 7.1 Administration Guide

InTrust Plug-in for Privilege Manager for Unix
168

2. Copy the pmintrust.sh script to the /opt/quest/sbin directory of your policy server.

cp /tmp/pmintrust/pmintrust.sh /opt/quest/sbin

3. If necessary, edit the pmintrust.sh script and modify the EVDIRS and EVGLOB
variables so that the script can locate the necessary event log files. For example, if
your policy defines the eventlog variable as:

eventlog="/var/log/eventlogs/"+year+"/"+month+"/"+day+"/"+user+"_events.db";

Change the EVDIRS and EVGLOB variables in the pmintrust.sh script to:

EVDIRS=`find /var/log/eventlogs –type d`
EVGLOB="*_events.db"

4. Configure the system to run the pmintrust.sh script as the root user.

One Identity recommends that you add a crontab entry as the pmpolicy service user,
and configure the cronjob to run pmrun with root user privileges.

The crontab entry is a file called pmpolicy.crontab in the pmintrust.tgz archive.

a. The following crontab entry runs pmrun pmintrust.sh at 10:50 pm everyday:

50 22 * * * /opt/quest/bin/pmrun /opt/quest/sbin/pmintrust.sh

To add the crontab, login (or su) to the pmpolicy service account and run the
following command:

$ crontab /tmp/pmintrust/pmpolicy.crontab

Alternatively, you can configure the script to run directly as the root user by
creating a root cron job, and skip part b) of this step.

There is a root.cronjob file in the pmintrust.tgz archive.

b. If you are using the default profile-based policy, add the pmintrust.profile to
your policy to allow the pmpolicy service account to run the pmintrust.sh script
as the root user.

To checkout, add, and commit the changes to the policy, run the following
pmpolicy command:

/opt/quest/sbin/pmpolicy checkout –d /tmp
cp /tmp/pmintrust/pmintrust.profile /tmp/policy_pmpolicy/profiles/
chown pmpolicy:pmpolicy /tmp/policy_
pmpolicy/profiles/pmintrust.profile
/opt/quest/sbin/pmpolicy add –p profiles/pmintrust.profile –d /tmp
/opt/quest/sbin/pmpolicy commit –d /tmp –l ″add pmintrust profile″

5. Run a new command with Privilege Manager for Unix to verify the change, such as:

pmrun id

Privilege Manager for Unix 7.1 Administration Guide

InTrust Plug-in for Privilege Manager for Unix
169

6. Allow the cronjob to run at the scheduled time, then verify the InTrust event log file,
/tmp/pm_evlog.intrust, was created and contains your test event.

Installing the InTrust Knowledge Pack

To install the InTrust Knowledge Pack

1. Using a InTrust for Active Directory Administration account, login to your InTrust for
Active Directory server.

2. Extract the Privilege_Manager_InTrust_<version>.zip file to a temporary folder, such
as, d:\temp.

3. Open a command prompt and change to the following directory:

<INTRUST_HOME>\Server\ADC\SupportTools\

4. Import each of the XML files using the InTrustPDOImport.exe command, as
following:

InTrustPDOImport.exe -import D:\temp\PM_DataSource.xml
InTrustPDOImport.exe -import D:\temp\PM_GatheringJob.xml
InTrustPDOImport.exe -import D:\temp\PM_GatheringJob_igtc.xml
InTrustPDOImport.exe -import D:\temp\PM_GatheringPolicy.xml
InTrustPDOImport.exe -import D:\temp\PM_GatheringTask.xml
InTrustPDOImport.exe -import D:\temp\PM_Site.xml

5. Verify the Privilege Manager for Unix objects are in the InTrust Manager, under
Sites:

Privilege Manager for Unix 7.1 Administration Guide

InTrust Plug-in for Privilege Manager for Unix
170

InTrust Knowledge Pack objects

Object type Objects

Gathering policy ‘Privilege Manager for Unix: Event Log Monitoring’

Job ‘Gather Privilege Manager for Unix Events’

Task ‘Privilege Manager for Unix daily collection of
events’

Site ‘Privilege Manager for Unix hosts’

Report ‘Privilege Manager for Unix All Events’

‘Privilege Manager for Unix All Events By Result’

‘Privilege Manager for Unix Elevated Privilege
Events’

‘Privilege Manager for Unix Policy Server By
Result’

‘Privilege Manager for Unix Policy Server Events’

‘Privilege Manager for Unix Rejected Events’

‘Privilege Manager for Unix Out Of Band Events’

‘Privilege Manager for Unix Event
Log’

Table 24: InTrust Knowledge Pack objects

Installing the InTrust Reporting Pack

To install the InTrust Reporting Pack

1. Using an InTrust Administration account, log in to your InTrust server.

2. Run the MSI file extracted in the previous section from Privilege_Manager_InTrust_
<version>.zip

d:\temp\QPM4U.1.0.0.006.msi

To use the MSI installer for the InTrust Reporting Pack, your InTrust Server must use
the WindowsSQL Server 2005 as its back-end database.

3. Follow the instructions in the on-screen Wizard.

4. Using a web browser, navigate to your InTrust reports and verify that you now have
an InTrust for Privilege Manager for Unix section, for example:

Privilege Manager for Unix 7.1 Administration Guide

InTrust Plug-in for Privilege Manager for Unix
171

http://<Intrust Server>/Reports

Configuring the InTrust data collection

To install the InTrust data collection

1. Using an InTrust Administration account, log in to your InTrust server.

2. From the menu, navigate to: Configuration | Sites | Unix Network | Privilege
Manager for Unix hosts.

3. Right click, then select Properties.

4. Select the Objects tab, click Add | Computer, then enter the name of your
Privilege Manager for Unix policy server InTrust agent.

5. Click Apply, then OK.

6. From the menu, navigate to:Workflow | Tasks | Privilege Manager for Unix
daily collection of events.

7. Right click, then select Run.

8. From the menu, navigate to:Workflow | Sessions and view the status of your
running task which should complete within a couple of minutes, depending on the size
of your InTrust event log.

9. Verify that the task completes successfully without errors.

Viewing InTrust reports

To view InTrust reports

1. Using a web browser, navigate to your InTrust reports and verify that you now have
an InTrust for Privilege Manager for Unix section.

http://<Intrust Server>/Reports

Privilege Manager for Unix 7.1 Administration Guide

InTrust Plug-in for Privilege Manager for Unix
172

2. Select the report type that you want to generate, based on the data currently held in
InTrust.

Generating reports

InTrust provides all of its reporting services through the InTrust Knowledge Portal which is
based on Microsoft SQL Server Reporting Services. This provides functionality to generate
reports dynamically from the InTrust data store and display them though a simple browser
based utility.

Privilege Manager for Unix 7.1 Administration Guide

InTrust Plug-in for Privilege Manager for Unix
173

The Knowledge Portal allows you to create reports manually, however there are a
number of pre-compiled reports that gather the following Privilege Manager for Unix
event log data:

l All events

l Elevated privilege events

l All events grouped result

l Out of band events

l Rejected events

The reports are provided in a .msi installer which installs and configures the required
Knowledge Portal components. To view the reports, simply load the Knowledge Portal using
Start | Programs | Quest Software | Quest InTrust Knowledge Portal | Quest
InTrust Knowledge Portal, then select InTrust for Privilege Manager for Unix from
the report list.

For more information, please refer to the InTrust for Active Directory documentation.

Gathering InTrust data

The general concept behind the InTrust server is that you configure a number of objects
individually to perform a specific part of the data gathering process. These objects are then

Privilege Manager for Unix 7.1 Administration Guide

InTrust Plug-in for Privilege Manager for Unix
174

combined to form a work flow system. These are the objects you need to configure to
complete a simple data gathering work flow:

l Configuration | Sites: Contains a list of Privilege Manager for Unix policy servers
from which the gathering process gathers data.

l Configuration | Data Sources: Stores details about the data source format.

l Gathering | Gathering Policies: Specifies which data source to use.

l Workflow | Tasks: A task contains a list of jobs, each of which specifies the
frequency at which to gather data according to a particular gathering policy.

l Configuration | Data Stores: Database or InTrust Repository that stores the
imported data.

You can either manually create these objects or import them from the Privilege Manager
for Unix Knowledge Pack.

To import these objects

1. Run the InTrustPDOImport import utility:

InTrustPDOImport.exe –import <object>

Privilege Manager for Unix 7.1 Administration Guide

InTrust Plug-in for Privilege Manager for Unix
175

The import utility is located by default in:

<install location>\Quest Software\InTrust\Server\ADC\SupportTools

2. Once you have imported the objects, add the list of Privilege Manager for Unix policy
servers to the site object.

For more information about importing objects, refer to the InTrust Creating Custom
Data Collection documentation.

Once configured, the InTrust server objects can gather the data.

By default the Privilege Manager for Unix gathering task provided in the knowledge
pack retrieves event log data on a daily basis. However, you can customize this
setting in the Gathering Policy.

One Identity recommends that you verify the gathering process by running the task
manually.

To run the gathering process manually

1. In the Quest InTrust Manager, navigate toWorkflow | Tasks.

2. Right-click the Privilege Manager for Unix task and select Run.

The details of a gathering job are recorded in Workflow | Sessions, accessible by
means of the tree view.

The example below shows the result of a successful job.

Privilege Manager for Unix 7.1 Administration Guide

InTrust Plug-in for Privilege Manager for Unix
176

Privilege Manager for Unix 7.1 Administration Guide

InTrust Plug-in for Privilege Manager for Unix
177

12

Troubleshooting

To help you troubleshoot, One Identity recommends the following resolutions to some
of the common problems you might encounter as you deploy and use Privilege
Manager for Unix.

Displaying profile-based policy debug
information

To view debug information for profile-based policy, set the value for the pf_tracelevel
variable either globally in global_profile.conf, or in an individual profile.

To set the pf_tracelevel variable in the profile

1. Enable the pf_tracelevel option. For example:

Variable: pf_tracelevel: Enables tracing/debugging output at different
levels:
1:show reason for reject, 2: verbose output, 3: show debug trace
pf_tracelevel=2;

2. To view the trace output, run a command with pmrun, like this:

$ pmrun id
**
** One Identity Privilege Manager for Unix Version 6.0.0 (006) **
** This request is being authorized on master :<HostName>
** User "luser" has submitted a request from host "<HostName>"
** to run the command "id"
**

User : luser
Host : <HostName>
Command : id

* Check profile:profiles/admin.profile
** Profile:admin does not match user

Privilege Manager for Unix 7.1 Administration Guide

Troubleshooting
178

** Profile:admin does not match UNIX group
** Profile:admin does not match AD group list
* Check profile:profiles/demo.profile
** Validate command:id
** Profile:demo cmd[0] matches command:id Request accepted by the "demo"
profile

All interactions with this command will be recorded in the file:
/var/opt/quest/qpm4u/iolog/demo/luser/id_20121023_1038_qu3zcf

Executing "id" as user "root" ...

**
**

uid=0(root) gid=0(root) groups=0(root)

Enabling program-level tracing

Technical Support may ask you to create a trace file when you run a program by using the -
z option. The -z option enables tracing on a specific program or currently running process.

To display program-level tracing

1. Run a program with the -z option, like this:

<CommandName> -z on

The -z option creates a <CommandName>.ini file which then creates a
<CommandName>.trc file when you run the command. The .trc file contains the debug
information. Both the .ini and the .trc files are created in the /tmp directory.

2. Once you have finished getting the trace output you need, run the program with the -
z off option so the log will not continue to grow.

Load balancing and policy updates

pmloadcheck is both a command and a background daemon (run with the –i flag). When run
as a command, it checks, updates, and reports on the status of the policy server. You can
use pmloadcheck from a policy server or PM Agent.

When run as a daemon process, it keeps track of the status of the policy servers for
failover and load-balancing purposes. On policy servers, pmloadcheck is responsible for
keeping the production policy file up to date.

Privilege Manager for Unix 7.1 Administration Guide

Troubleshooting
179

See pmloadcheck on page 417 for more information about the syntax and usage of
this command.

Policy servers are failing

The primary and secondary policy servers must be able to communicate with each
other and the remote hosts must be able to communicate with the policy servers in the
policy group.

For example, if you run the pmloadcheck command on a policy server or PM Agent to
determine that it can communicate with other policy servers in the policy group, you may
get output similar to the following:

++ Checking host:myhost.example.com (10.10.181.87) ... [FAIL]

There are several possible reasons for failure:

l Policy server host is down

l Network outage

l Service not running on policy server host

These are some ways to verify that the Privilege Manager for Unix service is running
properly on the policy server host:

1. To verify the policy server configuration, run

pmsrvinfo

2. To verify that the service is running, enter

ps –ef | grep pmserviced

3. To verify that the pmmasterd port is in a listening state on the primary policy
server, enter

netstat –na | grep 12345

4. To verify the service is enabled, look for the following in the Privilege Manager for
Unix configuration file (/etc/opt/quest/qpm4u/pm.settings)

pmmasterdEnabled YES

5. To restart the service (on a Linux host), enter

/etc/init.d/pmserviced restart

Privilege Manager for Unix 7.1 Administration Guide

Troubleshooting
180

-Or-

pmserviced -s

6. Check for other communication issues, such as with your firewall, name resolution,
dead network interface, and so forth.

Privilege Manager for Unix 7.1 Administration Guide

Troubleshooting
181

Appendix A

Appendix:Privilege Manager for Unix Policy
File Components

This appendix provides detailed information about the components that you use to
construct the pmpolicyPrivilege Manager for Unix security policy file.

Lexical and syntactic productions

Data types

Operators and expressions

Lexical and syntactic productions

One Identity uses the following language standards to define the grammar of the policy
scripting language used in Privilege Manager for Unix.

Production Description

<identifier> ::= [A-Za-z][A-Za-z0-9_]*

<number> ::= [0-9]+

<octalnumber> ::= 0[0-7]+

<hexnumber> ::= 0x[a-fA-F0-9]+

<realnumber> ::= <number> '.' <number>

<string> ::= \" <non-double-quote | backslashed-double-quote >* \"

| ' <non-single-quote | backslashed-single-quote >* '

<non-double-quote> ::= [^\"]

<backslashed-double-
quote>

::= \\\"

Table 25: Lexical productions

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Policy File Components
182

Production Description

<non-single-quote> ::= [^']

<backslashed-single-
quote>

::= \\'

<comment> ::= <shell-style-comment> | <c-style-comment> | <cplusplus-
style-comment>

<shell-style-
comment>

::= '#' [^\n]*

<c-style-comment> ::= /* [^*/]* */

<cplusplus-style-
comment>

::= // [^\n]*

Production Description

Policy ::= { Statement | Procedure }

Procedure ::= ('procedure' | 'function') <identifier> '(' [Paramet-
ers] ')' BlockStatement

Parameters ::= Parameter {',' Parameter }

Parameter ::= <identifier> ['=' Expression]

Statements ::= Statement { Statement }

Statement ::= IfStatement | ForStatement | DoWhileStatement |
WhileStatement | SwitchStatement | BreakStatement |
ContinueStatement | ReturnStatement | AcceptStatement |
RejectStatement | IncludeStatement | ReadOnlyStatement
| ReadOnlyExceptStatement | ExpressionStatement |
BlockStatement

IfStatement ::= 'if' '(' Expression ')' Statement ['else' Statement]

WhileStatement ::= 'while' '(' Expression ')' Statement

DoWhileStatement ::= 'do' BlockStatement 'while' '(' Expression ')' ';'

ForStatement ::= 'for' '(' Expressions ';' Expression ';' [Expression] ')'
Statement | 'for' '(' <identifier> 'in' Expression ')'
Statement

SwitchStatement ::= 'switch' '(' Expression ')' '{' [Cases][Default] '}'

Cases ::= Case { Case }

Case ::= 'case' Expression ':' Statements

Table 26: Syntactic productions

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Policy File Components
183

Production Description

Default ::= 'default' Statements

BreakStatement ::= 'break' ';'

ContinueStatement ::= 'continue' ';'

ReturnStatement ::= 'return' [Expression] ';'

IncludeStatement ::= 'include' Expression ';'

AcceptStatement ::= 'accept' ';'

RejectStatement ::= 'reject' [Expression] ';'

ReadOnlyStatement ::= 'readonly' Expression ';'

ReadOnlyExceptStatement ::= 'readonlyexcept' Expression ';'

ExpressionStatement ::= Expression ';'

BlockStatement ::= '{' Statements '}'

Expressions ::= Expression {',' Expressions }

Expression ::= AssignmentExpression | ConditionalExpression

AssignmentExpression ::= PrimaryExpression { AssignmentOp Expression }

AssignmentOp ::= '=' | '+=' | '-=' | '*=' | '/='

ConditionalExpression ::= LogicalOrExpression ['?' Expression ':' Expression]

LogicalOrExpression ::= LogicalAndExpression { '||' LogicalAndExpression }

LogicalAndExpression ::= BitwiseOrExpression { '&&' BitwiseOrExpression }

BitwiseOrExpression ::= BitwiseAndExpression { '|' BitwiseAndExpression }

BitwiseAndExpression ::= EqualityExpression { '&' EqualityExpression }

EqualityExpression ::= RelationalExpression { EqualityOp Relation-
alExpression }

EqualityOp ::= '==' | '!=

RelationalExpression ::= AdditiveExpression { RelationalOp AdditiveExpression
}

RelationalOp ::= '<' | '>' | '<=' | '>=' | 'in'

AdditiveExpression ::= MultiplicativeExpression { AdditiveOp Multi-
plicativeExpression }

AdditiveOp ::= '+' | '-'

MultiplicativeExpression ::= PrimaryExpression { MultiplicativeOp PrimaryEx-

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Policy File Components
184

Production Description

pression }

MultiplicativeOp ::= '*' | '/' | '%'

PrimaryExpression ::= PrefixAssignmentExpression | DesignatorExpression |
LiteralExpression | '-' Expression | '!' Expression | 'typeof'
Expression | 'defined' <identifier> | '(' Expression ')'

PrefixAssignmentExpression ::= PrefixOp <identifier>

PrefixOp ::= '++' | '--'

DesignatorExpression ::= <identifier> | <identifier> PostfixOp | <identifier>
Arguments | <identifier> ListAccess { ListAccess }

PostfixOp ::= '++' | '--'

Arguments ::= '(' [Expressions] ')'

ListAccess ::= '[' Expression ']'

LiteralExpression ::= <string> | <number> | <hexnumber> | <octal-
number> | <realnumber> | ListLiteral

ListLiteral ::= '{' [Expressions] '}'

Data types

The following data types are available for use in the policy scripting language.

Type Description Example

array A multi-dimensional array that can
contain any mixture of types.

Users={"fred", "jen", "sally"};
Ids={1, 9, 10}; Usermap={
Users, Ids}; print(umap[0][2] +
" -> " + umap[1][2]);

boolean The values true and false. x = true;

double A number with a fractional
component.

x=2.5; y=4.3; print(x+y);
#prints 6.8

int The type integer includes the set of
integers (…, -2, -1, 0, 1, 2, …).

The constants true and false are
defined to have the values 1 and 0,
respectively.

count=0; x=y=1;

You can specify an octal number
by preceding it with a leading
zero. For example, when
specifying a umask value
runumask=022

Table 27: Data types

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Policy File Components
185

Type Description Example

Specify hexadecimal numbers with
the prefix 0x.

ldapid Special type to support LDAP
functions.

ldapsearchresult Special type to support LDAP
functions.

list An ordered group of strings
separated by commas and surroun-
ded by curly braces.

List elements are accessed by post-
fixing them with square brackets []
containing the index of the desired
element. Indices start at 0.

mylist = {"string zero",
"string one", "string two"};
print({"a", "b", "c"}[1]); #
prints "b"

string A sequence of zero or more charac-
ters within single or double quotes.

Mystr="this is a string";
Str1="user: " + user;

undefined A variable is assigned a type when
it is assigned a value of that type.

A variable that is referenced but
has not been assigned a value is set
to the type undefined.

if (typeof(myvar) ==
"undefined") { myvar=user;}

Operators and expressions

Operators specify what is done to variables, constants, and expressions.

Expressions combine variables and constants to produce new values. Expressions which
use the operators !, ||, &&, ==, !=, <, >, <=, >=, in, !in and () return a boolean value of
true or false.

Unless otherwise specified, these operators are valid for all types of variables.

Operator Description Example

= variable = expression

The assignment operator assigns a copy
of the expression on the right side to the
variable on the left side.

count=0; x=y=1; str="this is a
string"; users={"fred",
"john"}; list1=users; list
[1]="johnr";

+= variable += expression count=1; count +=10; print
(count); #prints 11

Table 28: Variable operators

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Policy File Components
186

Operator Description Example

The addition self-assignment operator
adds the value of the expression to the
value of the variable and stores the result
in the variable. Valid for integer, double
and string data types.

-= variable -= expression

The subtraction self-assignment
operator subtracts the value of the
expression from the value of the variable
and stores the result in the variable. Valid
for integer and double data types.

Count=10; Count-=2; print
(Count); #prints 8

*= variable *= expression

Themultiplication self-assignment
operator multiplies the value of the
expression by the value of the variable and
stores the result in the variable. Valid for
integer and double data types.

tot =10; tot *= 10; print
(tot); #prints 100

/= variable /= expression

The division self-assignment operator
divides the value of the variable by the
value of the expression and stores the
result in the variable. Valid for integer and
double data types.

tot=10; tot /=2; print(tot);
#prints 5

var++ variable ++

The postfix auto increment operator
returns the value of the variable and adds 1
to the variable. Valid for integer and double
data types.

count=0; userlist
[count++]="john";

++var ++variable

The prefix auto increment operator adds
1 to the variable and returns the result.
Valid for integer and double data types.

++count=-1; userlist
[++count]="john";

var-- variable --

The postfix auto increment operator
returns the value of the variable and
subtracts 1 from the variable. Valid for
integer and double data types.

for(i=10; i>0; i--) {…}

--var --variable

The prefix auto increment operator

i=9; do { userlist[--i] =
value; } while (i>0);

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Policy File Components
187

Operator Description Example

subtracts 1 from the variable and returns
the result. Valid for integer and double data
types.

! !expression

Negation operator negates the value of the
expression and returns the result.

while (!found) {…} no = !true;
if (!(a&&b)) reject; #request
is rejected if a AND b #are
not true

|| expression || expression

Logical or operator resolves to true if
either expression resolves to true.

if ((user in list1) || (user
in list2)) {accept;}

&& expression && expression

Logical or operator resolves to true if both
expressions resolve to true.

if ((defined myuser) &&
(myuser == "root")) {accept;}

| expression | expression

Bitwise or operator resolves to true.

if (word | 0x4) {…}

& expression & expression

Bitwise and operator resolves to true.

if (word & 0x4) {…}

== expression == expression

Resolves to true if the expressions are
identical.

if (user == "root") {…} if
(x==1){…} if (list1 ==
{"one"}) {…}

!= Expression != expression

Logical or operator resolves to true if the
expressions are not identical.

if (found != true) {…} if
(user != "root") {…} if (list1
!= {"root"}) {…}

() (expression)

Forces a particular order of evaluation.

if ((a||b) && c) { accept; }
if (a || (b && c)) { reject; }

?: Conditional expression ? t_expression : f_
expression

The conditional expression is evaluated. If
it resolves to true, then it evaluates to t_
expression, else it evaluates to f_
expression.

runuser = (user == "cory") ?
"root" : "sys"; # is
equivalent to: # if
(user=="cory") { # runuser =
"root";} # else { # runuser =
"sys";}

in string in expression

Resolves to true if the string is a member
of the list. It performs a glob-style check on
each member of the list, so each list
element can be a glob expression. The

list={"root", "admin"}; print
("root" in userlist); #prints
1

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Policy File Components
188

Operator Description Example

string cannot be a glob expression.

!in string !in expression

Resolves to true if the string is not a
member of the list. It performs a glob-style
check on each member of the list, so each
list element can be a glob expression. The
string cannot be a glob expression.

list={"root", "admin"}; print
("john" ! in userlist);
#prints 1

+ - * / % expression operator expression

Mathematical operators return the result
of evaluating the arithmetic expression.
The normal mathematical rules for order of
evaluation apply. All operands must be
integers or doubles. The exception is the +
operator which will concatenate strings and
lists.

a = 5 + 4 * 2; #a == 13 b = 5
* 4 / 2; #b == 10 c = 5 % 4;
#c == 1 d = "string1" +
"string2"; #d = "string1
string2" e={"one"}+{"two"}; #e
= {"one", "two"};

< > <=
>=

expression operator expression

Relational operators resolve to true if the
relationship is true.

4 > 7 // evaluates false 4 >=
4 // evaluates true 4 < 1 //
evaluates false "foo" == "bar"
// false "foo" > "bar" //
true, because foo follows bar
alphabetically

export export <varname>

Adds a local variable to the event log and
I/O log. Can be specified multiple times.

[] list[number]

Returns the value of an element in a list or
array.

list1={"user0", "user1",
"user2"}; print(List[2]);
#prints user2 list0={"user0",
0}; list1={"user1",1};
maplist={list0, list1}; print
(maplist[0][0], maplist[0]
[1]); #prints user0 0

typeof typeof expression

Returns a string representation of the type
of an expression.

print(typeof x); #undefined
x=1; print(typeof x); #integer
x="1"; print(typeof x);
#string x={"1"};print(typeof
x); #array

defined defined variable

Resolves to true if the variable has been
declared with a value.

print(defined x); #prints 0
x=1; print(defined x); #prints
1

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Policy File Components
189

Appendix B

Appendix:Privilege Manager for Unix
Variables

This appendix provides detailed information about the variables that may be present in
event log entries:

l Variable names

l Variable scope

l Global input variables

l Global output variables

l Global event log variables

l PM settings variables

See also Profile variables on page 66 for additional information about policy profile
variables.

Variable names

Privilege Manager for Unix uses a number of predefined global variables and user-defined
variables within the pmpolicy scripting language.

Here is some general information about user-defined variables:

l A user-defined variable is declared the first time it is assigned a value. If a variable
is referenced before it has been assigned a value, it has the special type of
"undefined".

l A variable name can be any length.

l You can use any number of user-defined variables.

l The first character of a variable name must be a letter or an underscore (_).

l Variable names are case-sensitive; thus, the names "checkhost" and "CHECKHOST"
refer to different variables.

l Keywords are case-sensitive; you must enter them in lower case.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
190

l Loose typing is applied when variables of different types are used. Thus, if you use
mixed types with an operator, such as, an integer and a string with a "+" operator,
the parser will attempt to convert the result to a string.

Variable scope

All variables are global in scope unless declared from within a function or procedure.

If a variable is first declared in a function or procedure, it has local scope within that
particular function or procedure and is deleted once the function or procedure returns.

Example

gvar1="global";

procedure p1() {
gvar1="changed in f1"; #gvar1 has global scope
pvar1="local_to_p1"; #pvar1 is local to procedure p1()

p2();
}

procedure p2() {
gvar1="changed in f2"; # gvar1 is still global
print((defined pvar1? pvar1 : "undefined"));

this line prints "undefined"
since

pvar1 is now out of scope
}

Global input variables

The following predefined global variables are initialized from the submit-user’s
environment. You can use these variables in the decision making process in the policy file
but you cannot change their value.

Variable Data type Description

alertkeymatch sting The pattern matched by pmlocald.

Table 29: Global input variables

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
191

Variable Data type Description

argc integer Number of arguments in the request.

argv list List of arguments in the request.

bkgd boolean Reflects the "-b" background argument of a pmrun
call.

client_parent_pid integer Process ID of the client's parent process.

client_parent_uid integer User ID associated with the client's parent
process.

client_parent_
procname

string Process name of a client's parent process.

clienthost string Originating login host.

command string Pathname of the request.

cwd string Current working directory.

date string Current date.

day integer Current day of month as integer.

dayname string Current day of the week.

domainname string The Active Directory domain name for the submit
user if Authentication Services is configured.

env list List of submit user’s environment variables.

false integer Constant value.

FEATURE_LDAP integer Read-only constant used with feature_enabled()
function.

FEATURE_VAS integer Read-only constant used with feature_enabled()
function.

gid integer Group ID of the submitting user’s primary group
on sudo host.

group string Submit user’s primary group.

groups list Submit user’s secondary groups.

host string Host destined to run the request.

hour integer Current hour.

masterhost sting Host on which the master process is running.

masterversion string Privilege Manager for Unix version of masterhost.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
192

Variable Data type Description

minute integer Current minute.

month integer Current month.

nice integer nice value of the submit user’s login.

nodename string Hostname of pmrun agent.

optarg integer Contains the parameter for the last argument or
empty string.

opterr integer Determines whether to display errors from the
getopt functions.

optind integer Contains the current argument list index. Use with
getopt functions.

optopt string Contains the letter of the last option that had an
issue. Use with getopt functions.

optreset boolean Restarts the getopt functions from the beginning.

optstrictparameters boolean Lets getopt_long() recognize non-compliant
argument parameter forms.

pid integer Process ID of the master process.

pmclient_type integer The type of client that sent the request.

pmclient_type_pmrun integer Read-only constant for pmrun type clients.

pmclient_type_sudo integer Read-only constant for sudo type clients.

pmshell integer Identifies a Privilege Manager for Unix shell
program.

pmshell_builtin integer A constant value that identifies a shell builtin
command.

pmshell_cmd integer Identifies a command run from a Privilege
Manager for Unix shell program.

pmshell_cmdtype integer Identifies type of a shell subcommand.

pmshell_exe integer A constant value that identifies a normal execut-
able command.

pmshell_interpreter integer Identifies the program directive of a shell script.

pmshell_prog string Name of the Privilege Manager for Unix shell
program.

pmshell_script integer A constant value that identifies a shell script.

pmshell_uniqueid string uniqueid of the Privilege Manager for Unix shell

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
193

Variable Data type Description

program.

pmversion string Privilege Manager for Unix version string of client.

ptyflags string Identifies ptyflags of the request.

requestlocal integer Indicates if the request is local.

requestuser string User that the submit user wants to run the request.

rlimit_as string Controls the maximum memory that is available to
a process.

rlimit_core string Controls the maximum size of a core file.

rlimit_cpu string Controls the maximum size CPU time of a process.

rlimit_data string Controls the maximum size of data segment of a
process.

rlimit_fsize string Controls the maximum size of a file.

rlimit_locks string Control the maximum number of file locks for a
process.

rlimit_memlock string Controls the maximum number of bytes of virtual
memory that can be locked.

rlimit_nofile string Controls the maximum number of files a user may
have open at a given time.

rlimit_nproc string Controls the maximum number of processes a user
may run at a given time.

rlimit_rss string Controls the maximum size of the resident set
(number of virtual pages resident at a given time)
of a process.

rlimit_stack string Controls the maximum size of the process stack.

samaccount string The sAMAccountName for the submit user if
Authentication Services is configured.

selinux integer Identifies whether a client is running an SELinux
environment.

status integer Exit status of the most recent system command.

submithost string Name of the submit host.

submithostip string IP address of the submit host.

thishost string The value of the thishost setting in pm.settings on
the client.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
194

Variable Data type Description

time string Current time of request.

true integer Read-only constant with a value of 1.

ttyname string ttyname of the submit request.

tzname string Name of the time zone on the server at the time
the event was read from the event log by pmlog.

uid integer User ID of the submitting user on host.

umask integer umask of the submit user.

unameclient list Uname output on host.

unamemaster list Unameoutput on policy server host.

uniqueid string Uniquely identifies a request in the event log.

use_rundir string Contains the value "!~!" and represents the
runuser’s home directory on the runhost.

use_rungroup string Contains the value "!g!" and represents the
runuser’s primary group on the runhost.

use_rungroups string Contains the value "!G!" and represents the
runuser’s secondary group list on the runhost.

use_runshell string Contains the value "!!!" and represents the
runuser’s login shell on the runhost.

user string Submit user.

year integer Year of the request (YY).

alertkeymatch

Description

Type string READONLY

alertkeymatch contains the pattern matched by pmlocald. This variable is not available for
use in the policy file, it is only available in the event log. To view the event log, use the
pmlog -l command.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
195

Example

#view all alerts recorded in the audit log that match the pattern "passwd"
pmlog –l -c 'alertkeymatch == "passwd"'

Related Topics

alertdate

alertkeysequence

alertkeyaction

alerttime

argc

Description

Type integer READONLY

argc contains the number of arguments supplied for the original command. This includes
the command name itself. For example, if the original command is pmrun ls –al, then argc
is set to 2.

Example

if any arguments are passed to a vi editor program, like vi
then verify the path is not in a list of forbidden directories
if ((basename(command) in vi_program_list) && (argc > 1))
{

count=0;
while (count < length(forbid_dir_list))
{

if (glob(forbid_dir_list[count], dirname(argv[1])))
{

reject "You are not allowed to edit a file in this
directory";

}
count=count+1;

}
}

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
196

Related Topics

argv

argv

Description

Type list READONLY

argv is a list of the arguments supplied for the original command, including the
command itself. For example, if the original command is pmrun ls –al, then argv is set
to {"ls","-al"}.

Example

if any arguments are passed to an editor program, like vi
then verify the path is not in a list of forbidden directories
if ((basename(command) in vi_program_list) && (argc > 1))
{

count=0;
while (count < length(forbid_dir_list))
{

if (glob(forbid_dir_list[count], dirname(argv[1])))
{

reject "You are not allowed to edit a file in this
directory";

}
count=count+1;

}
}

Related Topics

argc

bkgd

Description

Type boolean READONLY

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
197

bkgd reflects the "-b" background argument of a pmrun call. If the user requested the
background mode, it is set to 1.

To change whether the call runs in the background, set the runbkgd variable.

client_parent_pid

Description

Type integer READONLY

Process ID of client's parent process.

Example

only allow requests submitted from a login shell
(parent process name starts with a dash)
if (client_parent_procname[0] == "-") {

printf("process info -- name:[%s], pid[%d], uid[%d]\n"
client_parent_procname, client_parent_pid, client_parent_uid);

reject "only requests from login shells are allowed";
}

Related Topics

client_parent_uid

client_parent_procname

client_parent_uid

Description

Type integer READONLY

User ID associated with the client's parent process.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
198

Example

only allow requests submitted from a login shell
(parent process name starts with a dash)
if (client_parent_procname[0] == "-") {

printf("process info -- name:[%s], pid[%d], uid[%d]\n"
client_parent_procname, client_parent_pid, client_parent_uid);

reject "only requests from login shells are allowed";
}

Related Topics

client_parent_pid

client_parent_procname

client_parent_procname

Description

Type string READONLY

Process name of a client's parent process.

Example

only allow requests submitted from a login shell
(parent process name starts with a dash)
if (client_parent_procname[0] == "-") {

printf("process info -- name:[%s], pid[%d], uid[%d]\n"
client_parent_procname, client_parent_pid, client_parent_uid);

reject "only requests from login shells are allowed";
}

Related Topics

client_parent_pid

client_parent_uid

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
199

clienthost

Description

Type string READONLY

clienthost contains the host name/IP address of the requesting host. For a typical pmrun
command, this will be identical to the submithost variable. For a Privilege Manager for Unix
shell running as a login shell (for example, pmksh, pmcsh, pmsh, pmloginshell, and pmbash),
this will contain the host name from which the user is logging in, which may not be a
Privilege Manager for Unix host. For example, if the user logs in by means of a telnet
session from a Windows PC, then the clienthost variable will contain the host name of the
Windows PC. Always use short names when checking the clienthost variable, as some
login programs may truncate the full host name.

Example

reject commands being issued from unknown workstations
workstations = {"sun34","sun35","sun36"};
if (!(clienthost in workstations))

reject;

Related Topics

submithost

submithostip

runhost

eventloghost

runclienthost

command

Description

Type string READONLY

The name of the command being run.

The command variable generally contains the full path name of the command being run. Use
the basename() function to get the command name without the full path.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
200

Example

admincommands = {"hostname","kill","shutdown"};
if (basename(command) in admincommands)
{

runuser = "root";
accept;

}

Related Topics

runcommand

cwd

Description

Type string READONLY

cwd contains the pathname of the submit user's current working directory.

Example

if command is executed from any directory other than under /usr,
change the working directory to /tmp
if (cwd != "/usr" && !glob("/usr/*", cwd))

runcwd = "/tmp";

Related Topics

runcwd

date

Description

Type string READONLY

date contains the date the request was submitted in the form: YYYY/MM/DD.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
201

Example

if (pmshell)
{

prints the date and time the shell was opened
print(command + " started " + date + " "+ time);
accept;

}

Related Topics

dayname

minute

hour

day

month

year

time

day

Description

Type integer READONLY

day contains the day the request was submitted formatted as an integer in the range: 1–31.

Example

if (command == "dailyadmin")
{

if (day == 1)
{

first day of the month
runcommand = ""

}
}

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
202

Related Topics

dayname

minute

hour

date

month

year

time

dayname

Description

Type string READONLY

dayname contains the abbreviated name ("Mon", "Tue, "Wed", "Thu", "Fri", "Sat" or "Sun") of
the day the request was submitted.

Example

switch (dayname)
{

case "Mon":
case "Wed":
case "Fri":

adminusers = {"dan","robyn"};
break;

case "Tue":
case "Thu":

adminusers = {"robyn","cory"};
break;

default:
adminusers = {};

}
if (user in adminusers)
{

runuser = "root";
accept;

}

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
203

Related Topics

minute

hour

day

month

year

time

date

domainname

Description

Type string READONLY

The Active Directory domain name for the submit user if Authentication Services is
configured and the client is able to determine the domain name. Otherwise this variable is
set to an empty string.

Example

reject if the user is not in the uxwheel AD group
if (vas_user_is_member(samaccount, "uxwheel", domainname) == false)

reject "user is not in uxwheel group";

Related Topics

samaccount

env

Description

Type list READONLY

env contains the list of environment variables configured in the environment where the
submit user submitted the request.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
204

Example

index=search(env, "APPL_HOME");
if (index > -1)
{

aval=env[index];
if (dirname(aval) != "/usr")
{

printf("You are not permitted to run this application
from:%s\n",

dirname(aval));
}

}

Related Topics

runenv

false

Description

Type integer READONLY

false contains the constant value 0.

Example

adminusers = {"dan","robyn","cory"};
if ((user in adminusers) == false)

reject;

Related Topics

true

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
205

FEATURE_LDAP

Description

Type integer READONLY

Read-only constant used with the feature_enabled() function to determine whether LDAP
features are available on a particular policy server.

Example

if (!feature_enabled(FEATURE_LDAP)
print("LDAP support is not available on this policy server");

Related Topics

FEATURE_VAS

FEATURE_VAS

Description

Type integer READONLY

Read-only constant used with the feature_enabled() function to determine whether
Authentication Services features are available on a particular policy server.

Example

if (!feature_enabled(FEATURE_VAS)
print("Authentication Services support is not available on this policy
server");

Related Topics

FEATURE_LDAP

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
206

gid

Description

Type integer READONLY

gid contains the Group ID of the submitting user's primary group on the client host.

Example

adminusers = {"dan","robyn","cory"};
printf ("Request received from user id:%d %d\n", uid, gid);

Related Topics

uid

group

rungroup

group

Description

Type string READONLY

group contains the name of user's primary group.

Example

if (group == "admin")
adminusers = append(adminusers,user);

Related Topics

groups

rungroup

rungroups

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
207

groups

Description

Type string READONLY

groups contains the list all groups in which the user is a member.

Example

If a user belongs to a particular group, reject the command
if ("restrictedUsers" in groups)
{

reject;
}

Related Topics

group

rungroup

rungroups

host

Description

Type string READONLY

host identifies the host name where the user has requested to run the command. The value
is set to the host name selected by the pmrun –h <hostname> option, and defaults to
nodename. You may expand it to a fully qualified name, if shortnames are not used.

Example

If the requested host is not in the allowed_hosts list, reject the command
allowed_hosts = {“hosta.test.com”, “hostb.test.com”, “hostc.test.com”};
if (host !in allowed_hosts)
{

reject “Commands on host “ + host + “ are not allowed. \n”;

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
208

}

Related Topics

runhost

hour

Description

Type integer READONLY

hour contains the hour the request was submitted (0 – 23).

Example

if (hour == 12)
{

// require the users password from 12:00 to 12:59
if(!(userpasswd())
reject;

}
accept;

Related Topics

dayname

minute

day

month

year

time

date

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
209

masterhost

Description

Type string READONLY

masterhost contains the host name of the host running pmmasterd.

Example

printf("Privilege Manager for Unix is authorizing your request on host:
%s\n",masterhost);
accept;

masterversion

Description

Type string READONLY

masterversion contains the description of Privilege Manager for Unix policy server host.

Example

printf("Privilege Manager for Unix %s is authorizing your request on
host %s\n",

masterversion, masterhost);
accept;

minute

Description

Type integer READONLY

minute contains the minute the request was submitted (0-59).

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
210

Example

display all commands run at 12:00 pm
pmlog -c '(hour==12) && (minute==0)'

Related Topics

dayname

hour

day

month

year

time

date

month

Description

Type integer READONLY

month contains the month number the request was submitted (0-11).

Example

if (month == 11) && (day == 25)
{

printf ("Happy Christmas");
}

Related Topics

dayname

minute

hour

day

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
211

year

time

date

nice

Description

Type integer READONLY

nice contains the value of the submit user session's nice value, that controls the execution
priority. For more information, see the niceman pages.

Example

if (nice == 019)
{

printf("Warning: you have a very low scheduling priority");
}

Related Topics

runnice

nodename

Description

Type string READONLY

nodename contains the host name of the client host.

Example

printf("Client on host %s \n", nodename

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
212

Related Topics

submithost

optarg

Description

Type string READONLY

optarg contains the parameter for the last argument or, if the option takes no argument, an
empty string . Use with getopt functions.

opterr

Description

Type boolean READONLY

opterr determines whether to show errors from getopt functions.

optind

Description

Type integer READONLY

optind contains the current argument list index. Use with getopt functions.

optopt

Description

Type string READONLY

optopt contains the letter of the last option that had an issue. Use with getopt functions.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
213

optreset

Description

Type boolean READONLY

When set to True, optreset restarts the getopt functions from the beginning. The next time
a user calls a getopt function, optind will be set to 1.

optstrictparameters

Description

Type boolean READONLY

The getopt_long() function provides specific argument parameters. Arguments with
optional parameters are accepted only when entered in the format --argument=parameter.
For getopt_long() to recognize non-compliant forms, such as --argument parameter, set
optstrictparameters to False.

pid

Description

Type integer READONLY

pid contains the process ID number of the pmmasterd process.

Example

printf("The pmmasterd process id is :%i", pid);

pmclient_type

Description

Type integer READONLY

The client type (pmrun or sudo) of the Privilege Manager for Unix request.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
214

Example

reject if pmclient_type is "sudo"
if (pmclient_type == pmclient_type_sudo) {

reject;
} else if (pmclient_type == pmclient_type_pmrun) {

ok = true;
}

Related Topics

pmclient_type_pmrun

pmclient_type_sudo

pmclient_type_pmrun

Description

Type integer READONLY

Read-only constant for pmrun type clients. You can compare pmclient_type_pmrun to
pmclient_type to determine if the request was sent from a Privilege Manager for Unix client
including the pmrun command, the pmshells (pmksh, pmsh, pmcsh, pmbash), and the
pmshellwrapper.

Example

reject if pmclient_type is "sudo"
if (pmclient_type == pmclient_type_sudo) {

reject;
} else if (pmclient_type == pmclient_type_pmrun) {

ok = true;
}

Related Topics

pmclient_type

pmclient_type_sudo

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
215

pmclient_type_sudo

Description

Type integer READONLY

Read-only constant for sudo type clients. You can compare pmclient_type_sudo to pmclient_
type to determine if the request was sent from a Sudo Plugin client.

Example

reject if pmclient_type is "sudo"
if (pmclient_type == pmclient_type_sudo) {

reject;
} else if (pmclient_type == pmclient_type_pmrun) {

ok = true;
}

Related Topics

pmclient_type

pmclient_type_pmrun

pmshell

Description

Type integer READONLY

pmshell initializes to true if a Privilege Manager for Unix shell program (such as pmksh,
pmsh, pmcsh, pmloginshell, and pmbash) is running; otherwise, the variable is undefined.

Example

if (defined pmshell)
{

printf ("Now running: %s\n", pmshell_prog);
pmshell_restricted = 1;
pmshell_checkbuiltins = 1;

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
216

pmshell_reject = "You are not allowed to run this command";
pmshell_allow = {"ls","grep","cat"};
pmshell_forbid = append(pmshell_forbid, "passwd");
pmshell_forbid = append(pmshell_forbid, "kill");

}
else
{

printf("Not running a command within %s\n", pmshell_prog);
accept;

}

Related Topics

pmshell_restricted

pmshell_checkbuiltins

pmshell_cmd

pmshell_prog

pmshell_reject

pmshell_allow

pmshell_forbid

pmshell_reject

pmshell_restricted

pmshell_builtin

Description

Type integer READONLY

pmshell_builtin is a constant value that identifies a shell builtin command. Use it to
compare with the value of the pmshell_cmdtype variable.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
217

Example

if (defined pmshell_cmd){
if ((user in safe_shell_list) && (pmshell_cmdtype == pmshell_

builtin))
{

#allow all built-ins for selected users accept;
}

}

Related Topics

pmshell

pmshell_restricted

pmshell_cmd

pmshell_prog

pmshell_reject

pmshell_allow

pmshell_forbid

pmshell_restricted

pmshell_cmd

Description

Type integer READONLY

pmshell_cmd is only defined if the command is a Privilege Manager for Unix shell program
(in which case it is set to false) or the command is a shell subcommand running from a
Privilege Manager for Unix shell program (in which case it is set to true).

This variable is only applicable to the pmsh, pmksh, pmcsh, and pmbash programs.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
218

Example

if (defined pmshell_cmd){
if (user !in safe_shell_list)
{

#check builtins
pmshell_checkbuiltins=true;

}
}

Related Topics

pmshell

pmshell_restricted

pmshell_checkbuiltins

pmshell_prog

pmshell_reject

pmshell_allow

pmshell_forbid

pmshell_restricted

pmshell_cmdtype

Description

Type integer READONLY

pmshell_cmdtype is only defined if the command is a shell subcommand running from a
Privilege Manager for Unix shell.

This variable is only applicable to the pmsh, pmcsh, pmksh, and pmbash programs.

It is set to one of these constant values: pmshell_builtin, pmshell_script, or pmshell_exe.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
219

Example

if (defined pmshell_cmd){
if (user !in safe_shell_list)
{

#check builtins
pmshell_checkbuiltins=true;

}
}

Related Topics

pmshell

pmshell_restricted

pmshell_checkbuiltins

pmshell_prog

pmshell_reject

pmshell_allow

pmshell_forbid

pmshell_restricted

pmshell_exe

Description

Type integer READONLY

pmshell_exe contains a constant value that identifies a normal executable command. Use it
to compare with the value of the pmshell_cmdtype variable.

Example

if (defined pmshell_cmd){
if (pmshell_cmdtype == pmshell_exe)
{

if (basename(runcommand) in shell_sub_list) {
accept;

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
220

}
}

}

Related Topics

pmshell

pmshell_restricted

pmshell_checkbuiltins

pmshell_prog

pmshell_reject

pmshell_allow

pmshell_forbid

pmshell_restricted

pmshell_interpreter

Description

Type integer READONLY

pmshell_interpreter is only defined if the command is running from within a Privilege
Manager for Unix shell program. If the shell subcommand is an interpreted script (that is,
the first line of the file contains a directive in the format #!<path>) then this variable
contains the pathname of the interpreter identified by this directive. Use this variable to
detect and reject a user from running an unrestricted shell script from within a restricted
shell program.

Example

if (defined pmshell)
{

printf("Starting %s shell\n", pmshell_prog);
accept;

}
if ((defined pmshell_cmd) && (pmshell_cmd == true))
{

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
221

if running a restricted shell, then don't allow the user to run a shell
script unless it's a Privilege Manager for Unix shell
if (pmshell_restricted && (pmshell_cmdtype == pmshell_script))
{

if (dirname(pmshell_interpreter) != "/opt/quest/bin")
{

reject "Restricted shell only permits you to run a shell in the
/opt/quest/bin directory";

}
}

Related Topics

pmshell

pmshell_restricted

pmshell_checkbuiltins

pmshell_prog

pmshell_reject

pmshell_allow

pmshell_forbid

pmshell_restricted

pmshell_prog

Description

Type string READONLY

pmshell_prog is only defined if a Privilege Manager for Unix shell program is running. If a
shell is running, it is set to the name of the shell program (pmsh, pmcsh, pmksh, pmloginshell,
or pmbash).

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
222

Example

if (defined pmshell)
{

printf("Starting %s shell\n", pmshell_prog);
accept;

}

Related Topics

pmshell

pmshell_restricted

pmshell_checkbuiltins

pmshell_cmd

pmshell_reject

pmshell_allow

pmshell_forbid

pmshell_restricted

pmshell_script

Description

Type integer READONLY

pmshell_script is a constant value that identifies a shell script. Use it for comparison with
the value of the pmshell_cmdtype variable.

Example

if (defined pmshell_cmd && (pmshell_cmdtype == pmshell_script))
{

#forbid any shell scripts unless interpreter is a program in /opt/quest/bin

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
223

if (dirname (pmshell_interpreter) != "/opt/quest/bin"))
{

reject "You cannot run this script";
}

}

Related Topics

pmshell

pmshell_restricted

pmshell_checkbuiltins

pmshell_prog

pmshell_reject

pmshell_allow

pmshell_forbid

pmshell_restricted

pmshell_uniqueid

Description

Type string READONLY

pmshell_uniqueid is only defined if the command is a shell subcommand running from a
Privilege Manager for Unix shell (pmsh, pmcsh, pmksh, and pmbash). It contains the uniqueid
of the session running the shell program. It allows the individual commands running
within the shell to be identified as part of the same shell session when viewing the audit
log entries.

Example

#shell script example to print out all shell commands for each shell run on
#15 january 2009

#constraint to select pmshell programs running on selected date
constraint="(date=\"2009/01/15\") && (pmshell==1) && (pmshell_cmd==0))"

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
224

#format to display user and shell program name
userformat="sprintf(\"User:%s, shell:%s\", user, pmshell_prog)"

#format to display shell subcommand name and time
shellformat="sprintf(\" Time:%s, ShellCommand:%s\n", time, runcommand)"

#find the unique IDs for all shell sessions
allids=`/bin/sh –c "pmlog –p 'sprintf(\"%s\", uniqueid)' –c '${constraint}'"`

#for each shell session, print out the username and shell program name,
#and display each shell command run from the shell, with the time it was
#executed for one in $allids
do

cmd="pmlog –p '${userformat}' –c 'uniqueid==\"${one}\"'"
/bin/sh –c "${cmd}"
cmd="pmlog –p '${shellformat}' -c 'pmshell_uniqueid==\"${one}\"'"
/bin/sh –c "$cmd"

done

Related Topics

pmshell

pmshell_restricted

pmshell_checkbuiltins

pmshell_prog

pmshell_reject

pmshell_allow

pmshell_forbid

pmshell_restricted

pmversion

Description

Type string READONLY

pmversion contains the Privilege Manager for Unix version and build number.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
225

Example

print("The current Privilege Manager for Unix version is %s", pmversion);

ptyflags

Description

Type string READONLY

ptyflags contains a bitmask indicating the ptyflags set from the submit user's environment.
If set, the following bits indicate:

Bit 0: stdin is open
Bit 1: stdout is open
Bit 2: stderr is open
Bit 3: command was run in pipe mode
Bit 4: stdin is from a socket
Bit 5: command to be run using nohup

Example

PTY_IN=0x1;
if (ptyflags & PTY_IN)
{

#only authenticate if stdin is open and password can be entered
if (!authenticate_pam(user, "sshd"))
{

reject "Failed to authenticate user";
}

}
else
{

reject "Cannot authenticate the user"; }

Related Topics

runptyflags

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
226

requestlocal

Description

Type integer READONLY

Indicates if the request is local. requestlocal is true if no request was made to run on a
remote host using pmrun -h.

Example

reject requests to run on a remote host
if (requestLocal == false)

reject "remote requests are not allowed";

requestuser

Description

Type string READONLY

requestuser is initialized to the selected user name if you select the pmrun –u option. It is a
request to set the runuser for the session to the selected user name. The administrator can
decide whether to honor the request in the policy file. By default, this variable is set to the
value of the user variable.

Example

if ((user in adminusers) && (requestuser in adminusers_allowed))
{

runuser = requestuser;
}

rlimit_as

Description

Type string READ ONLY

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
227

The rlimit_as variable controls the maximum memory that is available to a process.

Related Topics

runrlimit_as

rlimit_core

Description

Type string READ ONLY

The rlimit_core variable controls the maximum size of a core file.

Related Topics

runrlimit_core

rlimit_cpu

Description

Type string READ ONLY

The rlimit_cpu variable controls the maximum size CPU time of a process.

Related Topics

runrlimit_cpu

rlimit_data

Description

Type string READ ONLY

The rlimit_data variable controls the maximum size of data segment of a process.

Related Topics

runrlimit_data

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
228

rlimit_fsize

Description

Type string READ ONLY

The rlimit_fsize variable controls the maximum size of a file.

Related Topics

runrlimit_fsize

rlimit_locks

Description

Type string READ ONLY

The rlimit_locks variable control the maximum number of file locks for a process.

Related Topics

runrlimit_locks

rlimit_memlock

Description

Type string READ ONLY

The rlimit_memlock variable controls the maximum number of bytes of virtual memory that
can be locked.

Related Topics

runrlimit_memlock

rlimit_nofile

Description

Type string READ ONLY

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
229

The rlimit_nofile variable controls the maximum number of files a user may have open at
a given time.

Related Topics

runrlimit_nofile

rlimit_nproc

Description

Type string READ ONLY

The rlimit_nproc variable controls the maximum number of processes a user may run at a
given time.

Related Topics

runrlimit_nproc

rlimit_rss

Description

Type string READ ONLY

The rlimit_rss variable controls the maximum size of the resident set (number of virtual
pages resident at a given time) of a process.

Related Topics

runrlimit_rss

rlimit_stack

Description

Type string READ ONLY

The rlimit_stack variable controls the maximum size of the process stack.

Related Topics

runrlimit_stack

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
230

samaccount

Description

Type string READONLY

The user's sAMAccountName for the submit user if Authentication Services is configured
and the client is able to determine the sAMAccountName. Otherwise this variable is set to
an empty string.

Example

reject if the user is not in the uxwheel AD group
if (vas_user_is_member(samaccount, "uxwheel", domainname) == false)

reject "user is not in uxwheel group";

Related Topics

domainname

selinux

Description

Type boolean READONLY

selinux detects whether the client running pmrun or sudo is within an SELinux
environment.

If SELinux is enabled on the client or policy host machine, it is True. If disabled, it is False.

status

Description

Type integer READONLY

status contains the exit status of the most recent command run by the system function.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
231

Example

Cprofile=system("find /home/custom_appl –name customprofile.txt");
if (status == 0)
{

welcome_msg=readfile(Cprofile);
print(welcome_msg);

}

submithost

Description

Type string READONLY

submithost contains the name of the host where the request was submitted.

Example

if (submithost == "sun.34.com")
{

reject;
}

Related Topics

host

runhost

submithostip

Description

Type string READONLY

submithostip contains the IP address of the host where a request was submitted.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
232

Example

if (submithost == "10.10.180.123")
{

reject;
}

Related Topics

submithost

thishost

Description

Type string READONLY

The value of the thishost setting in the pm.settings file on the client. If you do not specify
the thishost setting or if the client cannot resolve thishost to an IP address configured on
the client, the variable remains undefined.

Example

print a warning if thishost is not defined
if (!defined thishost)

printf("WARNING: the thishost variable is not defined. \
Please check the pm.settings file on host %s.\n", submithost);

Related Topics

host

runhost

submithost

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
233

time

Description

Type string READONLY

time contains the time the request was submitted in the form HH:MM:SS.

Example

printf("Command Started At Time: %s", time)

Related Topics

dayname

minute

hour

day

month

year

date

true

Description

Type integer READONLY

true is a read-only constant with a value of 1.

Example

if (iolog_encrypt == true)
{

iolog = mktemp("/var/adm/pm.enc."+user+"."+command+".XXXXXX");
}

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
234

Related Topics

false

ttyname

Description

Type string READONLY

ttyname contains the name of the TTY device from which the user submitted a request.

Example

if (ttyname == "dev/pts/1")
{

printf("Command not authorized using tty device dev/pts/1");
reject;

}

tzname

Description

Type string READONLY

Description

The time zone variable, tzname, contains the name of the time zone on the server at the
time the event was read from the event log by pmlog. The time zone may be overridden
using the TZ environment variable when running pmlog.

Note that tzname is accessible from pmlog but not in the policy script evaluation.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
235

Example

pmlog -p `sprintf("%s %s %s, %s, %s", date, time, tzname, event, uniqueid)’
2013-03-14 10:51:59 MDT, Accept, 0b1c7ff3447ac074b4795be2dcd59f6429c8624b
2013-03-14 10:51:59 MDT, Accept, a6cfad1ba6eb64bf9a17d5295b2bb29daa7fbb33
2013-03-14 10:51:59 MDT, Accept, fa742929679bc6c88eadd25ff85d75361f1d28b2
2013-03-14 10:51:59 MDT, Accept, 97ffdb433819c5feab6ec26b528f60dfb18c3d34
2013-03-15 07:02:47 MDT, Accept, d84ac9052265912eb13d32f80584d1ae097e4ce5
2013-03-19 09:41:59 MDT, Accept, b228110f32525c2092d2a46d0327e55f2dfc1d39

The actual values may vary by platform. In this sample output, the value of
tzname is "MDT".

The following example shows the use of the TZ variable acting on the output:

TZ=Europe/Paris pmlog -p `sprintf("%s %s %s, %s", date, time, tzname, event
)’
2013-03-14 17:51:59 CET, Accept, 0b1c7ff3447ac074b4795be2dcd59f6429c8624b
2013-03-14 17:51:59 CET, Accept, a6cfad1ba6eb64bf9a17d5295b2bb29daa7fbb33
2013-03-14 17:51:59 CET, Accept, fa742929679bc6c88eadd25ff85d75361f1d28b2
2013-03-14 17:51:59 CET, Accept, 97ffdb433819c5feab6ec26b528f60dfb18c3d34
2013-03-15 14:02:47 CET, Accept, d84ac9052265912eb13d32f80584d1ae097e4ce5
2013-03-19 16:41:59 CET, Accept, b228110f32525c2092d2a46d0327e55f2dfc1d39

Related Topics

date

time

uid

Description

Type integer READONLY

uid contains the user ID of the submitting user on the sudo host.

Example

printf("Req uest received from user id: %d %d\n", uid,gid);

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
236

Related Topics

gid

group

rungroup

umask

Description

Type integer READONLY

umask contains the value of the submit user's umask value. See the umask man page
for details.

Example

if (umask == 077)
{

printf("Do not create files with permissions 0777\n");
runumask =0666;

}

Related Topics

runumask

unameclient

Description

Type list READONLY

unameclient contains the system uname information from the client host. This information
corresponds to the list returned by uname. For example:

l operating system name

l nodename

l operating system release level

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
237

l operating system version

l machine hardware name

unamemaster

Description

Type list READONLY

unamemaster contains the system uname information from the policy serverclient host. This
information corresponds to the list returned by uname. For example:

l operating system name

l nodename

l operating system release level

l operating system version

l machine hardware name

uniqueid

Description

Type string READONLY

uniqueid is a 12-character string identifying a session. This is guaranteed to be unique on
one policy server machine.

Example

printf("Command is running as id = %s", uniqueid);

use_rundir

Description

Type string READONLY

use_rundir is a read-only variable containing the value "!~!". You can use it as a
placeholder in the context of any runtime variable to represent the runuser's home

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
238

directory, as defined on the runhost. pmlocald replaces any instances of this value found in
any runtime variable with the runuser's home directory on the runhost.

Example

allowedrequestusers={"root", "admin", "oradmin"};
//if requestuser is in allowed list, set runuser to requestuser

and set groups to match primary group on the runhost,
//and change directory to runuser's home dir
if (requestuser in allowedrequestusers)
{

runuser=requestuser;
rungroup=use_rungroup;
rungroups= {use_rungroup};
runcwd = use_rundir;
accept;

}

use_rungroup

Description

Type string READONLY

use_rungroup is a read-only variable containing the value "!g!". Use it as a placeholder in
the context of any runtime variable to represent the runuser's primary group on the
runhost. pmlocald replaces any instances of this value found in any runtime variable with
the runuser's primary groupname on the runhost.

Example

allowedrequestusers={"root", "admin", "oradmin"};
//if requestuser is in allowed list, set runuser to requestuser

and set groups to match runuser's primary group only,
//and change directory to runuser's home dir
if (requestuser in allowedrequestusers)
{

runuser=requestuser;

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
239

rungroup=use_rungroup;
rungroups= {use_rungroup};
runcwd = use_rundir;
accept;

}

use_rungroups

Description

Type sting READONLY

use_rungroups is a read-only variable containing the value "!G!". Use it as a placeholder in
the context of any runtime variable to represent the runuser's group list on the runhost.
pmlocald replaces any instances of this value found in any runtime variable with the
runuser's group list on the runhost.

Example

allowedrequestusers={"root", "admin", "oradmin"};
//if requestuser is in allowed list, set runuser to requestuser

and set groups to match those on the runhost, adding any
//other run groups required, and change directory to runuser's home dir
if (requestuser in allowedrequestusers)
{

runuser=requestuser;
rungroup=use_rungroup;
rungroups= {use_rungroups, "oraclegroup"};
runcwd = use_rundir;
accept;

}

use_runshell

Description

Type string READONLY

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
240

use_runshell is a read-only variable containing the value "!!!". Use it as a placeholder in the
context of any runtime variable to represent the runuser's login shell on the runhost.
pmlocald replaces any instances of this value found in any runtime variable with the
runuser's login shell on the runhost.

Example

allowedrequestusers={"root", "admin", "oradmin"};
allowedscripts={"appscript1"};
//Run a script as the runuser's login shell.
//If requestuser is in allowed list, set runuser to requestuser, set
//environment to match runuser's environement, add some necessary
//environment vars for this script, and run the script as the runuser's
shell.

if ((runcommand in allowedscripts) && (requestuser in
allowedrequestusers))
{

runuser=requestuser;
rungroup=use_rungroup;
rungroups= {use_rungroups, "appgroup"};
runcwd = use_rundir;

//use the runuser's environment
profile_use_runuser=true;

//add an application environment var to runuser's env, based on
runuser's

//home dir
str=sprintf("%s/appdir", use_rundir);
setenv("APP_LOCAL_DIR", str);

//Set the runcommand to use the runuser's shell to run the script
runcommand = use_runshell;
runargv=replace(runargv, 1, length(runargv));
runargv[0]=use_runshell;
runargv=append(runargv, "-c");
runargv=append(runargv, "/appdir/appscript");
accept;

}

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
241

user

Description

Type string READONLY

user containts the submit user's login name.

Example

If ((user == "matt") && (command == "passwd"))
{

printf("matt is not allowed to alter passwords");
reject;

}

Related Topics

runuser

year

Description

Type integer READONLY

year contains the year in which the request was submitted in the format YY.

Example

if ((year == "08") || (year == "12"))
{

if ((month == "01") && (day == "29"))
{

printf("This year is a leap year, something has gone wrong");
reject;

}
}

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
242

Related Topics

dayname

minute

hour

day

month

date

time

Global output variables

The following predefined global variables are initialized from the submit user's
environment. They can be affected by the policy file and are used by pmlocald to set up the
runtime environment for the runcommand.

Variable Data
Type

Description

alertkeyaction string Action to be taken when alertkeysequence is matched.

alertkeysequence list List of patterns to match in a session.

disable_exec integer Specifies whether to prevent the runcommand process from
executing new processes.

eventlog string Pathname of the audit log.

eventloghost string Host name list for remote event logging.

execfailedmsg string Message to display if runcommand cannot run.

iolog string Pathname of the keystroke log.

iolog_encrypt integer Specifies whether to encrypt the keystroke log.

iolog_errmax integer Max bytes to log for a stderrmessage.

iolog_opmax integer Max chars to log for a stdoutmessage.

iologhost string Host name list for remote keystroke logging.

log_passwords integer Specifies whether to exclude passwords from the keystroke
log.

logomit list Variables to omit from the audit and keystroke logs.

logstderr integer Specifies whether to keystroke log stderrmessages.

Table 30: Global output variables

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
243

Variable Data
Type

Description

logstdin integer Specifies whether to keystroke log stdinmessages.

logstdout integer Specifies whether to keystroke log stdoutmessages.

notfoundmsg string Message to display if the runcommand is not found on the run
host.

passprompts list Detects presence of password prompts.

pmshell_allow list Commands to allow in a Privilege Manager for Unix shell
without further authorization.

pmshell_
allowpipe

list Commands to allow in a Privilege Manager for Unix shell
without further authorization if input is from a pipe.

pmshell_check-
builtins

integer Specifies whether to authorize shell built-in commands in a
Privilege Manager for Unix shell.

pmshell_forbid list Commands to forbid in a Privilege Manager for Unix shell
without further authorization.

pmshell_
readonly

list Variables to mark as read-only in a Privilege Manager for
Unix shell.

pmshell_reject string Reject message to display when a forbidden command runs
in a Privilege Manager for Unix shell.

pmshell_restric-
ted

integer Specifies whether to run a Privilege Manager for Unix shell
in restricted mode.

preserve_
clienthost

integer Specifies whether to use the originating login host name in
preference to the submit host.

profile_keepenv list A list of values specified by the keepenv() call.

profile_setenv list A list of values specified by the setenv() call.

profile_unsetenv list A list of values specified by the unsetenv() call.

profile_use_
runuser

string Specifies whether to use the runuser’s environment rather
than the submit user’s environment

rejectmsg string Message to display when a session is rejected.

runargv list List of arguments for the request.

runbkgd boolean The run version of bkgd. When set to True, lets the user stop
the pmrun call and move it to the background.

runchroot string Requests the command to run with a specified root
directory.

runcksum string Identifies a checksum to use to verify against the

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
244

Variable Data
Type

Description

runcommand.

runclienthost string A modifiable copy of the clienhost input variable.

runcommand string Full pathname of the request.

runconfirmuser string Specifies whether the agent should request the runuser to
authenticate before executing the runcommand.

runcwd string Working directory to set for the request.

runenablerlimits boolean Lets you use runrlimit variables on the run host.

runenv list List of environment variables to set for the request.

rungroup string Primary group to set for the request.

rungroups list List of secondary groups to set for the request.

runhost string Host on which to run the request.

runnice integer Nice value to apply for the request.

runpaths list A list of permitted paths for commands.

runptyflags string Pty flags to apply for the request.

runrlimit_as string Controls the maximum memory that is available to a
process.

runrlimit_core string Controls the maximum size of a core file.

runrlimit_cpu string Controls the maximum size CPU time of a process.

runrlimit_data string Controls the maximum size of data segment of a process.

runrlimit_fsize string Controls the maximum size of a file.

runrlimit_locks string Control the maximum number of file locks for a process.

runrlimit_
memlock

string Controls the maximum number of bytes of virtual memory
that can be locked.

runrlimit_nofile string Controls the maximum number of files a user may have
open at a given time.

runrlimit_nproc string Controls the maximum number of processes a user may run
at a given time.

runrlimit_rss string Controls the maximum size of the resident set (number of
virtual pages resident at a given time) of a process.

runrlimit_stack string Controls the maximum size of the process stack.

runtimeout integer Specifies the number of seconds of idle time before ending

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
245

Variable Data
Type

Description

the session.

runumask integer Umask value to apply for the request.

runuser string User to run the request.

runutmpuser string Utmp user to use when logging to utmp.

subprocuser string User name to run subprocesses of the policy server master
daemon.

tmplogdir string Directory used for temporary storage of I/O log files if a
remote log host is specified in iologhost.

alertkeyaction

Description

Type string READ/WRITE

alertkeyaction contains the action to be taken if a command matches a pattern configured
in alertkeysequence. The alertkeyaction can be defined as "reject", "log" or any custom
string. The default value is "log".

Example

switch (user) {
case "root" : alertkeyaction = "ignore"; break;
default : alertkeyaction = "log"; break;

}

Related Topics

alertdate

alertkeysequence

alertkeymatch

alerttime

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
246

alertkeysequence

Description

Type list READ/WRITE

alertkeysequence contains a list of regular expressions, against which pmlocald checks the
standard input commands entered by the user during a session. If a match is found, then
an alert is raised in the event log.

Example

Switch (user) {
case "root": alertkeysequence={"passwd"};

alertkeyaction="log";
break;

default : alertkeysequence={"passwd", "shutdown"};
alertkeyaction="reject";
break;

}

Related Topics

alertdate

alertkeymatch

alertkeyaction

alerttime

disable_exec

Description

Type integer READ/WRITE

Use disable_exec to prevent the runcommand process from executing new UNIX processes.
For example, you can prevent a vi session from executing shell commands. This variable is
only supported if the underlying operating system supports the noexec feature; that is,
Linux, Solaris, HP-UX, and AIX. If set to true(1), Privilege Manager for Unix sets the LD_
PRELOAD environment variable, which causes the runcommand to be loaded with a Privilege
Manager for Unix library that overrides the system exec functions, and thus prevents the
runcommand from using exec to create a new process.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
247

Example

if (basename(runcommand) in editor_program_list)
{

disable_exec=true;
}

eventlog

Description

Type string READ/WRITE

eventlog contains the full pathname of the file in which audit events are logged. The default
pathname is /var/opt/quest/qpm4u/pmevents.db.

Example

adminusers = {"dan","robyn","cory"}
if (user in adminusers)

eventlog = "/var/log/pm+admin_eventlog_" + user + ".log";
else

eventlog = "/var/opt/quest/qpm4u/pmevents.db";

Related Topics

eventloghost

event

Event logging

eventloghost

Description

Type string READ/WRITE

eventloghost is a string that defines the host that acts as a centralized event log server.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
248

Example

eventloghost="sol32.test.com";

Related Topics

eventlog

event

execfailedmsg

Description

Type string READ/WRITE

If execfailedmsg is defined, this string sets the error message that displays if pmlocald fails
to run runcommand for any reason other than the file not being found.

Example

if (user != "root")
{

execfailedmsg = "This command is not available to you at this
time";
}

Related Topics

notfoundmsg

runcommand

iolog

Description

Type string READ/WRITE

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
249

iolog is the full path name of the keystroke log file in which input, output, and error
output is logged.

Example

if (command in {"csh","ksh"})
{

iolog_encrypt = true;
log_passwords = false;
iolog_errmax = 10000;
iolog_opmax = 10000;
iolog = mktemp("/var/adm/shells/pm." + user + "." + basename

(runcommand) + ".XXXXXX");
accept;

}
else

{
iolog=mktemp("/var/adm/pm." + user + "." + basename(runcommand) +

".XXXXXX");
}

Related Topics

iologhost

iolog_opmax

iolog_errmax

iolog_encrypt

log_passwords

tmplogdir

Keystroke (I/O) logging policy variables

iolog_encrypt

Description

Type integer READ/WRITE

Set iolog_encrypt to true to encrypt the contents of the keystroke log. The pmreplay
program decrypts the log before displaying it. The default value is false.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
250

Example

if (command in {"csh","ksh"})
{

iolog_encrypt = true;
log_passwords = false;
iolog_errmax = 10000;
iolog_opmax = 10000;
iolog = mktemp("/var/adm/pm." + user + "." + command + ".XXXXXX");
accept;

}

Related Topics

iologhost

iolog_opmax

iolog_errmax

log_passwords

iolog

Keystroke (I/O) logging policy variables

iolog_errmax

Description

Type integer READ/WRITE

iolog_errmax limits the number of bytes logged to the keystroke log for each line of stderr
produced during the session.

Example

if (command in {"csh","ksh"})
{

iolog_encrypt = true;
log_passwords = false;

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
251

iolog_errmax = 10000;
iolog_opmax = 10000;
iolog = mktemp("/var/adm/pm." + user + "." + command + ".XXXXXX");
accept;

}

Related Topics

iolog

iologhost

iolog_opmax

iolog_encrypt

log_passwords

Keystroke (I/O) logging policy variables

iolog_opmax

Description

Type integer READ/WRITE

iolog_opmax limits the size in bytes of each stdout keystroke log entry produced during
the session.

Example

if (command in {"csh","ksh"})
{

iolog_encrypt = true;
log_passwords = false;
iolog_errmax = 10000;
iolog_opmax = 10000;
iolog = mktemp("/var/adm/pm." + user + "." + command + ".XXXXXX");
accept;

}

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
252

Related Topics

iolog

iologhost

iolog_errmax

iolog_encrypt

log_passwords

Keystroke (I/O) logging policy variables

iologhost

Description

Type string READ/WRITE

iologhost is a string that defines the host that acts as a centralized I/O log server.

Example

iologhost="sol34.test.com";

Related Topics

iolog

iolog_opmax

iolog_errmax

iolog_encrypt

log_passwords

tmplogdir

log_passwords

Description

Type integer READ/WRITE

Set log_passwords to false to disable the keystroke logging of any password entry
commands detected during the session. The default value is true.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
253

Example

if (command in {"csh","ksh"})
{

iolog_encrypt = true;
log_passwords = false;
iolog_errmax = 10000;
iolog_opmax = 10000;
loggroup = "admin";
logstderr = true;
logstdout = false;
logstdin = true;
iolog = mktemp("/var/adm/pm." + user + "." + command + ".XXXXXX");

accept;
}

Related Topics

Keystroke (I/O) logging policy variables

logomit

Description

Type list READ/WRITE

logomit specifies a list of variable names to omit when logging to the keystroke and event
log which can be useful if space is at a premium. For example, the administrator could
choose to log only the runenv variable, and omit the submit env variable. The default is an
empty list.

Example

logomit={ "nice" };

Related Topics

iolog

eventlog

Event logging

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
254

logstderr

Description

Type integer READ/WRITE

Set logstderr to true to enable keystroke logging of stderr output produced during the
session. The default value is true.

Example

if (command in {"csh","ksh"})
{

iolog_encrypt = true;
log_passwords = false;
iolog_errmax = 10000;
iolog_opmax = 10000;
loggroup = "admin"; logstderr = true; logstdout = false;

logstdin = true;
iolog = mktemp("/var/adm/pm." + user + "." + command +

".XXXXXX");
accept;

}

Related Topics

logstdin

logstdout

Keystroke (I/O) logging policy variables

logstdin

Description

Type integer READ/WRITE

Set logstdin to true to enable keystroke logging of stdin input produced during the session.
The default value is true.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
255

Example

if (command in {"csh","ksh"})
{

iolog_encrypt = true;
log_passwords = false;
iolog_errmax = 10000;
iolog_opmax = 10000;
loggroup = "admin";
logstderr = true;
logstdout = false;
logstdin = true;
iolog = mktemp("/var/adm/pm." + user + "." + command + ".XXXXXX");
accept;

}

Related Topics

logstderr

logstdout

Keystroke (I/O) logging policy variables

logstdout

Description

Type integer READ/WRITE

Set logstdout to true to enable keystroke logging of stdout output produced during the
session. The default value is true.

Example

if (command in {"csh","ksh"})
{

iolog_encrypt = true;
log_passwords = false;
iolog_errmax = 10000;
iolog_opmax = 10000;

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
256

loggroup = "admin";
logstderr = true;
logstdout = false;
logstdin = true;
iolog = mktemp("/var/adm/pm." + user + "." + command + ".XXXXXX");
accept;

}

Related Topics

logstderr

logstdin

Keystroke (I/O) logging policy variables

notfoundmsg

Description

Type string READ/WRITE

notfoundmsg is set to the message that displays if the selected runcommand is not available on
the target host.

Example

notfoundmsg = "Command \"" + runcommand + "\" not available.";

passprompts

Description

Type list READ/WRITE

passprompts contains a list of strings that should be interpreted as password prompts when
attempting to exclude passwords from iolog.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
257

Example

passprompts={"Password=", "Enter password"};

pmshell_allow

Description

Type list READ/WRITE

pmshell_allow contains a list of regular expressions identifying Privilege Manager for Unix
shell subcommands that are pre-authorized. The list may contain regular expressions.

This variable is applicable to pmsh, pmcsh, pmksh, and pmbash.

On startup, the Privilege Manager for Unix shell programs load this list. Any shell
subcommand entered by the user that matches one of these expressions is pre-authorized,
that is, it will be allowed to run locally without any further authorization by pmmasterd, and
will not be logged as an event. By default, the list is empty.

Example

pmshell_allow = {"ls","grep"};

Related Topics

pmshell

pmshell_restricted

pmshell_checkbuiltins

pmshell_cmd

pmshell_prog

pmshell_reject

pmshell_forbid

pmshell_restricted

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
258

pmshell_allowpipe

Description

Type list READ/WRITE

pmshell_allowpipe identifies the list of Privilege Manager for Unix shell subcommands that
are pre-authorized if the input to the command is from a pipe. The list may contain regular
expressions.

This variable is applicable to pmsh, pmcsh, pmksh, and pmbash.

On startup, the Privilege Manager for Unix shells load this list. For any shell subcommand
entered by the user that takes its input from a pipe, if the command matches one of these
expressions, it will be allowed to run locally without any further authorization by the
pmmasterd, and will not be logged as an event. By default, the list is empty.

For example, if this list contains the string "more", the "more" command will be pre-
authorized in the context of the command ls | more but will require authorization in the
context of the command more /tmp/file.

Example

pmshell_allow = {"grep","cat", "more"};

Related Topics

pmshell

pmshell_restricted

pmshell_checkbuiltins

pmshell_cmd

pmshell_prog

pmshell_reject

pmshell_forbid

pmshell_restricted

pmshell_checkbuiltins

Description

Type integer READ/WRITE

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
259

If pmshell_checkbuiltins is set to true, the Privilege Manager for Unix shell program will
check all shell builtin commands as if they were not built-ins. That is, it will match each
one against the forbidden list, then the allowed list, and if no match is found, then the
command will be authorized with pmmasterd. To see a full list of the builtin commands for a
particular shell program, run the shell program with the -? option. The default value for
this variable is false.

This variable is applicable to the pmsh, pmksh, and pmcsh programs.

Example

if (defined pmshell_cmd){
if (user !in safe_shell_list)
{

#check builtins
pmshell_checkbuiltins=true;

}
}

Related Topics

pmshell

pmshell_restricted

pmshell_cmd

pmshell_prog

pmshell_reject

pmshell_allow

pmshell_forbid

pmshell_restricted

pmshell_forbid

Description

Type list READ/WRITE

pmshell_forbid contains a list of regular expressions loaded on startup by the Privilege
Manager for Unix shell programs: pmsh, pmcsh, pmksh, and pmbash. The list may contain
regular expressions.

Any command entered by the user during the shell session, that matches one of these
expressions, will be forbidden without any further authorization by the pmmasterd, and will

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
260

not be logged as an event. All shell subcommands are matched with this list before
checking the allowed list. By default, the variable contains an empty list.

Example

pmshell_forbid = {"kill","passwd"};

Related Topics

pmshell

pmshell_restricted

pmshell_checkbuiltins

pmshell_cmd

pmshell_prog

pmshell_reject

pmshell_allow

pmshell_restricted

pmshell_readonly

Description

Type list READONLY

pmshell_readonly is only defined if the command is a shell subcommand running from
within a Privilege Manager for Unix shell program (pmsh, pmcsh, and pmksh). You can set this
variable to a list of environment variables to mark as readonly in the shell. It defaults to an
empty list.

Example

if (defined pmshell)
{

#set some application specific readonly variables for the shell
pmshell_readonly={"PATH", "SHELL", "APPL_HOME"};

}

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
261

Related Topics

pmshell

pmshell_restricted

pmshell_checkbuiltins

pmshell_prog

pmshell_reject

pmshell_allow

pmshell_forbid

pmshell_restricted

pmshell_reject

Description

Type string READ/WRITE

The pmshell_reject string is displayed by the Privilege Manager for Unix shell programs
(pmsh, pmcsh, pmksh, and pmbash) for any shell subcommands rejected because they are
listed in pmshell_forbid. The default is "Request Rejected".

Example

pmshell_reject = "Your request has been rejected by the shell";

Related Topics

pmshell

pmshell_restricted

pmshell_checkbuiltins

pmshell_cmd

pmshell_prog

pmshell_allow

pmshell_forbid

pmshell_restricted

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
262

pmshell_restricted

Description

Type integer READ/WRITE

If pmshell_restricted is set to true, then the Privilege Manager for Unix shell program is
run as a restricted shell. This means that the user cannot:

l change directory

l change the PATH, SHELL, or ENV variables

l run any command that is not found in the PATH

l run any command identified by full pathname

l Overwrite any existing files using output redirection (such as, echo "" > /etc/passwd)

These restrictions are applied without any further authorization by the policy server. The
default for this variable is false.

This variable is applicable to the pmsh, pmcsh, pmksh, and pmbash programs.

Example

if (user != "root")
{

pmshell_restricted = true;
}

Related Topics

pmshell

pmshell_checkbuiltins

pmshell_cmd

pmshell_prog

pmshell_reject

pmshell_allow

pmshell_forbid

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
263

preserve_clienthost

Description

Type integer READ/WRITE

The clienthost variable normally matches the host name on which the pmrun client was
run. To preserve the host name of the login host instead, set the preserve_clienthost
variable to true.

Example

print("User has logged in from host:%s\n", clienthost);

profile_keepenv

Description

Type list READ/WRITE

A list of values specified by the keepenv() call. profile_keepenv tracks the values set from
the latest keepenv() function call. Do not modify this variable directly; the keepenv()
function updates this list.

Example

add "HOME" to the keepenv list if not already in the list
if ("HOME" !in profile_keepenv)

keepenv(append(profile_keepenv,"HOME"));

Related Topics

profile_setenv

profile_unsetenv

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
264

profile_setenv

Description

Type list READ/WRITE

A list of values specified by the setenv() call. profile_setenv tracks the values set from the
latest setenv() function call. Do not modify this variable directly; the setenv() function
updates this list.

Example

setenv "HOME" to "/root" if not already in the list
if (search(profile_setenv,"HOME=*") == -1)

setenv("HOME","/root");

Related Topics

profile_keepenv

profile_unsetenv

profile_unsetenv

Description

Type list READ/WRITE

A list of values specified by the unsetenv() call. profile_unsetenv tracks the values set from
the latest unsetenv() function call. Do not modify this variable directly; the unsetenv()
function updates this list.

Example

unsetenv "HOME" if not already in the list
if ("HOME" !in profile_unsetenv)

unsetenv("HOME");

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
265

Related Topics

profile_keepenv

profile_setenv

profile_use_runuser

Description

Type string READ/WRITE

The environment in which the runcommand runs is normally initialized from the submitting
user's environment (that is, the env variable). To direct the pmlocald daemon to initialize
the runtime environment using the runuser's environment on the agent instead, set
profile_use_runuser to true. The default value is false.

Note that profile_use_runuser causes the runuser's dotfiles to run without an associated
tty. The dotfiles (that is, .profile) should test for the existence of a tty (if `tty -s`) before
a command runs that relies on a tty (for example, "who am i", "tset", "stty").

Example

if (defined pmshell)
{

profile_use_runuser=true;
}

rejectmsg

Description

Type string READ/WRITE

rejectmsg contains the message that displays when a request is rejected.

Example

rejectmsg= "You are not permitted to run this command";

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
266

runargv

Description

Type list READ/WRITE

runargv specifies the complete argument list for the session. This variable is initialized
from the value of the incoming argv variable.

Example

Setting the runargv in the policy file can be used to add additional
command line arguments to programs
if (command == "runTest")
{

runargv=replace(runargv,1,length(runargv));
runargv=append(runargv, "-u", user };

}

Related Topics

argv

runbkgd

Description

Type booleanWRITABLE

runbkgd determines whether a command is run in the background. If set to True, the
command will ignore the SIGHUP (hangup) signal. This variable is initialized from the value
of the incoming variable bkgd.

This variable does not affect commands run via sudo.

runchroot

Description

Type string READ/WRITE

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
267

runchroot emulates the behavior of the system chroot command; that is, it runs a
command with a specified root directory. Ordinarily, file names are looked up starting at
the root of the directory structure, ('/'). Setting runchroot to a different value changes the
root directory, a directory that must exist.

Example

if (basename(runcommand) == "customapplication")
{

runchroot="/home/customapplicationv";
}

runcksum

Description

Type string READ/WRITE

If runcksum is defined, pmlocald verifies the value of this variable against the checksum of
the runcommand and rejects the request if it does not match. Set this variable to the value
produced by running the pmsum command on the agent with the full pathname of the
runcommand.

You can use this method to detect a program that has been changed without authorization,
and a program that a user is attempting to run from an unauthorized path.

Example

Generate a checksum value for the program "/usr/bin/passwd" on the
agent:host1
for use in the policy file on the policy server.
pmsum /usr/bin/passwd

The pmsum command displays the output:
fbc9cf01 /usr/bin/passwd

Update the security policy using this checksum:

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
268

if ((basename(runcommand) == "passwd") && (host == "host1"))
{

runcksum="fbc9cf01";
}

runclienthost

Description

Type string READ/WRITE

runclienthost is a modifiable copy of the clienthost input variable.

Example

reject commands being issued from unknown workstations
workstations = {"sun34","sun35","sun36"};
if (!(clienthost in workstations))

reject;

Related Topics

clienthost

runcommand

Description

Type string READ/WRITE

runcommand is a modifiable copy of the command input variable. It specifies the pathname of
the program that pmlocald will run.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
269

Example

Setting the runcomand can be a useful way of using a pseudonym for a
command that an
auditor wants to disguise:
if (command == "passcmd")
{

runcommand="/usr/bin/passwd"
runargv[0]="passwd";
runargv=replace(runargv,1,length(runargv));

}

Related Topics

command

runconfirmuser

Description

Type string READ/WRITE

Set runconfirmuser to a user name to direct pmlocald to request the runuser to
authenticate as this user before running the runcommand. If authentication fails, then
pmlocald rejects the session.

Example

if ((user in appl_users) && (command in appl_cmds))
{

runconfirmuser=runuser;
}

Related Topics

runuser

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
270

runcwd

Description

Type string READ/WRITE

runcwd is a modifiable copy of the cwd input variable. Specifies the working directory for
pmlocald to use when setting up the runtime environment for the session.

Example

if (command in appl_cmds)
{

runcwd = "/home/appl_home";
}

Related Topics

cwd

runenablerlimits

Description

Type booleanWRITABLE

runenablerlimits lets you use runrlimit variables on the run host. To enable the rlimit
variables, runenablerlimitsmust be set to a value of True.

runenv

Description

Type list READ/WRITE

runenv is a modifiable copy of the env input variable. It contains a list of environment
variables that pmlocald sets up when initializing the runtime environment for the session.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
271

Example

if ((command in appl_cmds) && (runhost == "sun8"))
{

runenv={"TERM=xterm","PATH=/usr/bin:/usr/local/bin", "HOME=/home/appl_
home"};
}

Related Topics

env

rungroup

Description

Type string READ/WRITE

rungroup is a modifiable copy of the group input variable. It specifies the primary group for
pmlocald to use when initializing the runtime environment.

Example

if ((user == "apache") && (command == "admin.cgi"))
{

rungroup="root";
}

Related Topics

groups

group

rungroups

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
272

rungroups

Description

Type list READ/WRITE

rungroups is a modifiable copy of the groups input variable. It specifies the full list of groups
for pmlocad to use when initializing the runtime environment.

Example

if ((user == "apache") && (command == "admin.cgi"))
{

rungroups={"admin","operators"};
}

Related Topics

groups

group

rungroup

runhost

Description

Type string READ/WRITE

runhost specifies the host on which the runcommand will run.

Example

If (command == "runSimulation")
{

runhost="sol34.test.com";
}

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
273

Related Topics

host

runnice

Description

Type integer READ/WRITE

runnice specifies the execution priority that pmlocald sets when initializing the runtime
environment. (For more details, see the UNIX man pages for nice.)

Example

if (timebetween(900,1630))
{

runnice=010;
}

else
{

runnice=020;
}

Related Topics

nice

runpaths

Description

Type list READ/WRITE

A list of permitted paths for commands. If configured, the agent rejects a command if it is
not run from one of these paths, even if the command is authorized by the policy.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
274

Example

allow commands only from the /bin, /sbin, /usr/bin, and /usr/sbin
directories
runpaths={"/bin", "/sbin", "/usr/bin", "/usr/sbin"};

runptyflags

Description

Type string READ/WRITE

runptyflags is a modifiable copy of the ptyflags input variable. Use it to close stdin to
prevent stdin on the runtime environment.

Example

if (basename(runcommand) == "appl_home")
{

close stdin and prevent the user from providing any input
for a command that is only intended to be run in batch mode.
runptyflags &= | 0x1;

}

Related Topics

ptyflags

runrlimit_as

Description

Type stringWRITABLE

runrlimit_as is a modifiable copy of the rlimit_as input variable. It controls the maximum
memory that is available to a process.

Related Topics

rlimit_as

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
275

runrlimit_core

Description

Type stringWRITABLE

runrlimit_core is a modifiable copy of the rlimit_core input variable. It controls the
maximum size of a core file.

Related Topics

rlimit_core

runrlimit_cpu

Description

Type stringWRITABLE

runrlimit_cpu is a modifiable copy of the rlimit_cpu input variable. It controls the
maximum size CPU time of a process.

Related Topics

rlimit_cpu

runrlimit_data

Description

Type stringWRITABLE

runrlimit_data is a modifiable copy of the rlimit_data input variable. It controls the
maximum size of the data segment of a process.

Related Topics

rlimit_data

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
276

runrlimit_fsize

Description

Type stringWRITABLE

runrlimit_fsize is a modifiable copy of the rlimit_fsize input variable. It controls the
maximum size of the data segment of a file.

Related Topics

rlimit_fsize

runrlimit_locks

Description

Type stringWRITABLE

runrlimit_locks is a modifiable copy of the rlimit_locks input variable. It controls the
maximum number of file locks for a process.

Related Topics

rlimit_locks

runrlimit_memlock

Description

Type stringWRITABLE

runrlimit_memlock is a modifiable copy of the rlimit_memlock input variable. It controls the
maximum number of bytes of virtual memory that can be locked.

Related Topics

rlimit_memlock

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
277

runrlimit_nofile

Description

Type stringWRITABLE

runrlimit_nofile is a modifiable copy of the rlimit_nofile input variable. It controls the
maximum number of files a user may have open at a given time.

Related Topics

rlimit_nofile

runrlimit_nproc

Description

Type stringWRITABLE

runrlimit_nproc is a modifiable copy of the rlimit_nproc input variable. It controls the
maximum number of processes a user may run at a given time.

Related Topics

rlimit_nproc

runrlimit_rss

Description

Type stringWRITABLE

runrlimit_rss is a modifiable copy of the rlimit_rss input variable. It controls the
maximum size of the resident set (number of virtual pages resident as a given time)
of a process.

Related Topics

rlimit_rss

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
278

runrlimit_stack

Description

Type stringWRITABLE

runrlimit_stack is a modifiable copy of the rlimit_stack input variable. It controls the
maximum size of the process stack.

Related Topics

rlimit_stack

runtimeout

Description

Type string READ/WRITE

runtimeout specifies the number of seconds of idle time allowed before the session
is closed.

Example

close the session if the user is idle for 5 minutes
runtimeout=300;

runumask

Description

Type integer READ/WRITE

runumask is a modifiable copy of the umask input variable. Specifies the umask filter which
determines file permissions for files created during execution of the runcommand.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
279

Example

trustedusers = {"jamie", "cory", "robyn"};
if (user in trustedusers)
{

runumask=066;
}

Related Topics

umask

runuser

Description

Type string READ/WRITE

runuser is a modifiable copy of the user input variable. Specifies the user name that
pmlocald uses when initializing the runtime environment for the runcommand.

Example

if ((user == "apache") && (command == "admin.cgi"))
{

runuser="root";
}

Related Topics

user

runutmpuser

Description

Type string READ/WRITE

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
280

runutmpuser specifies the login name of the user that will be used when updating the UNIX
utmp and wtmp files when the request runs.

Example

if (user == "djv")
{

runutmpuser="dave";
}

subprocuser

Description

Type string READ/WRITE

subprocuser is the user name used to run any subprocesses of pmmasterd such as, when
running the system function. The default value is "root".

Example

subprocuser="appl_user";
cfile=system("find /home/applhome –name customprofile.txt");
if (status == 0)
{

print(readfile(cfile));
}

tmplogdir

Description

Type integer READ/WRITE

tmplogdir is the directory used for temporary storage of I/O log files if a remote log host is
specified in iologhost. The default value is /opt/quest/qpm4u/iologs/queue.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
281

Example

iologhost="sol34.test.com";
tmplogdir="/var/iologs/queue";

iolog = mktemp("/var/adm/pm.enc."+user+"."+command+".XXXXXX");
}

Related Topics

iolog

iologhost

iolog_opmax

iolog_errmax

iolog_encrypt

log_passwords

Global event log variables

The following predefined global variables appear only in the audit (event) log. They are not
available for use in the policy file, as they are set by pmlocald during the runcommand
session. Use pmlog to view them.

Variable Data Type Description

alertdate string Date on which the alert was raised.

alerttime string Time at which the alert was raised.

event string Type of event.

exitdate string Date on which the finish event was logged.

exitstatus string Exit status of the request

exittime string Exit time of the request.

Table 31: Global event log variables

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
282

alertdate

Description

Type string READONLY

alertdate contains the date when a configured alert was matched by pmlocald. It is not
available for use in the policy file, it is set in the event log. To view the event log, use the
pmlog -l command.

Example

#display all alerts raised with action set to log
pmlog –l -c 'alertkeyaction == "log"'

Related Topics

alertkeyaction

alertkeysequence

alertkeymatch

alerttime

alerttime

Description

Type string READONLY

alerttime contains the time when a configured alert was matched by pmlocald. It is not
available for use in the policy file, it is set in the event log. To view the event log, use the
pmlog command.

Example

#display all alerts raised after 6pm
pmlog –l –c 'alerttime > "18:00:00"'

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
283

Related Topics

alertkeysequence

alertkeymatch

alertkeyaction

alerttime

event

Description

Type string READONLY

event identifies the type of event logged by the policy server process. An event is logged
when the policy server accepts or rejects a command. An event is also logged by the agent
when a runcommand completes execution and an alert is raised.

Possible values are:

l Accept

l Reject

l Finish

l AlertRaised

This value is saved in the event log and can be viewed using pmlog.

Example

#Display all accepted events from the audit log
pmlog –c 'event == "Accept"'

Related Topics

eventlog

eventloghost

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
284

exitdate

Description

Type string READONLY

exitdate is the date the requested command finished running. This is saved in the event log
when the session exits, and can be viewed using pmlog.

Example

#Display all events that finished on 15 january 2009
pmlog -c 'exitdate == "2009/01/15"'

Related Topics

exitstatus

exittime

exitstatus

Description

Type string READONLY

exitstatus contains the exit status of the runcommand. This variable is not available for use
in the policy file. It is logged in the "Finish" event by pmlocald when the session ends.

Example

#Display all sh commands that failed to complete successfully
pmlog –c 'runcommand == "sh" && exitstatus != "Command finished with
exit status 0"'

Related Topics

exitdate

exittime

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
285

exittime

Description

Type string READONLY

exittime is the time the requested command finished running (HH:MM:SS)

Example

#display all commands that finished after 6pm
pmlog –c 'exittime > "18:00:00"'

Related Topics

exitstatus

exitdate

PM settings variables

This section describes the settings and parameters used by Privilege Manager for Unix.
These settings are stored on each host in the /etc/opt/quest/qpm4u/pm.settings file which
contains a list of settings, one per line, in the form: settingName value1 [value2 [...
valuen]]. See Configuration prerequisites on page 122 to view a sample pm.settings file.

You can modify these policy server configuration settings using the configuration script
initialized by the pmsrvconfig command or you can modify the pm.settings file manually.
See Configuring the primary policy server for Privilege Manager for Unix on page 28 for
details about running the configuration script.

If you manually change the pm.settings file, restart the pmserviced and/or pmloadcheck
daemons in order for the changes to take effect.

The following table describes each of the pm.settings variables:

Defaults may differ depending on the platform you are configuring and whether you
are configuring a policy server or PM Agent. Many of these settings will not have a
default value.

The variables are not case sensitive.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
286

Variable Data
type

Description

certificates boolean
(YES/NO)

Specifies whether certificates are enabled. To
enable configurable certification, add the
following statement to the
/etc/opt/quest/qpm4u/pm.settings file on each
host: certificates yes.

Default: NO

For more information, see Enable configurable
certification on page 146.

checksumtype string Specifies standard or MD5 checksum types for
use with pmsum program.

clients list of
hostnames

Identifies hosts for which remote access
functions are allowed. Only required if one policy
server needs to retrieve remote information
from another policy server that does not
normally accept requests from it.

For more information, see Central logging with
Privilege Manager for Unix on page 157.

clientverify string Identifies the level of host name verification
applied by the policy server host to the submit
host name. The verification ensures that the
incoming IP address resolves (on the primary
policy server) to the same host name as
presented by the submit host.

Valid values are:

l none: No verification performed.

l yes: If a host name is presented for
verification by the runclient it will be
verified.

l All: The policy server will only accept a
request from a client if the host name is
verified.

Default: NONE

encryption string Identifies the encryption type. You must use the
same encryption setting on all hosts in your
system.

Valid values are:

Table 32: Variables: pm.settings

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
287

Variable Data
type

Description

l AES

l DES

l TripleDES

Default: AES

eventlogqueue string Directory used by pmmasterd and pmlogsrvd where
event data is temporarily queued prior to being
written to the event log database.

Default: /var/opt/quest/qpm4u/evcache

EventQueueFlush integer Tells pmlogadm how often to reopen the db (in
minutes) flushing the data.

Default: 0, in which case pmlogsrvd will keep the
db open while the service is running.

EventQueueProcessLimit integer Specifies the number of cached events that will
be processed at a time; this limits the memory
use in pmlogadm.

Default: 0, in which case pmlogsrvd will not
apply a limit.

facility string Sets the SYSLOG facility name to use when
logging a message to the syslog file.

Valid values are:

l LOG_AUTH

l LOG_CRON

l LOG_DAEMON

l LOG_KERN

l LOG_LOCAL0 through LOG_LOCAL7

l LOG_LPR

l LOG_MAIL

l LOG_NEWS

l LOG_USER

l LOG_UUCP

Default: LOG_AUTH, if the platform defines LOG_
AUTH; otherwise the default is 0 (zero).

failovertimeout integer Sets the timeout in seconds before a connection
attempt to a policy server is abandoned and the

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
288

Variable Data
type

Description

client fails over to the next policy server in the
list.

This setting also affects the timeout for the client
and agent.

Default: 10 seconds. If omitted from
pm.settings, default is 180 seconds.

failsafecommand string Sets the command to run in failsafe mode; that
is, login pmksh user as root.

fwexternalhosts list Identifies a list of hosts to use a different range
of source ports, identified by the
openreservedport and opennonreserved port
settings.

getpasswordfromrun boolean
(YES/NO)

Determines whether authentication is performed
on the policy server or the client when a
getuserpasswd() or getgrouppasswd() function is
called from the policy file. If set to yes, the
authentication is performed on the client.

This variable also affects the user information
functions: getfullname(), getgroup(), getgroups
(), gethome(), and getshell(). If set to yes in the
policy server's pm.settings file, these functions
retrieve user information from the client host.

Default: NO

handshake boolean
(YES/NO)

Enables the encryption negotiation handshake.
This allows a policy server to support clients
running different levels of encryption.

Default: NO

kerberos boolean
(YES/NO)

Enables or disables Kerberos.

Default: NO

For more information, see Configuring Kerberos
encryption on page 144.

keytab string Sets the path to the Kerberos keytab file.

Default: /etc/opt/quest/vas/host.keytab

krb5rcache string Sets the path to the Kerberos cache.

Default: /var/tmp

krbconf string Sets the path to the Kerberos configuration file.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
289

Variable Data
type

Description

Default: /etc/opt/quest/vas/vas.conf

libldap string Specifies the pathname to use for the LDAP
library.

No default value.

localport integer Sets the TCP/IP port to use for pmlocald.

Default: 12346

lprincipal string Sets the service principal name to use for the
agent.

Default: pmlocald

masterport integer Specifies the TCP/IP port to use for pmmasterd.

Default: 12345

masters list Identifies a list of policy server hosts to which a
client can submit requests for authorization, and
from which an agent can accept authorized
requests. This can contain host names or
netgroups.

No default value.

mprincipal string Sets the Kerberos service principal name to use
for the policy server.

Default: host

nicevalue integer Sets the execution priority level for Privilege
Manager for Unix processes.

Default: 0

opennonreserveportrange integer
integer

Specifies a range of non-reserved ports to use as
source ports when connecting to a host in the
fwexternalhosts list.

No default value.

openreserveportrange integer
integer

Specifies a range of reserved ports to use as
source ports when connecting to a host in the
fwexternalhosts list.

No default value.

pmclientdenabled boolean
(YES/NO)

Flag that enables the pmclientd daemon.

pmclientdopts string Sets the options for the pmclientd daemon.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
290

Variable Data
type

Description

pmlocaldenabled boolean
(YES/NO)

Flag that enables the pmlocald daemon.

pmlocaldlog string Sets the path for the agent error log.

Default: /var/adm/pmlocald.log or
/var/log/pmlocald.log depending on the
platform.

For more information, see Local logging on page
152.

pmlocaldopts string Sets the options for the pmlocald daemon.

pmloggroup string Specifies the group ownership for iolog and
eventlogs.

Default: pmlog

pmlogsrvlog string Identifies the log used by the pmlogsrvd daemon.

pmmasterdenabled boolean
(YES/NO)

Flag that enables the pmmasterd daemon.

Default: YES

pmmasterdlog string Sets the path for the master error log.

Default: /var/adm/pmmasterd.log or
/var/log/pmmasterd.log depending on the
platform.

For more information, see Local logging on page
152.

pmmasterdopts string Sets the options for the pmmasterd daemon.

Default: -ar

pmrunlog string Sets the path for the client error log.

Default: /var/adm/pmrun.log or
/var/log/pmrun.log depending on platform.

For more information, see Local logging on page
152.

pmservicedlog string Identifies the log used by the pmserviced
daemon.

Default: /var/log/pmserviced.log

pmtunneldenabled boolean
(YES/NO)

Flag that enables the pmtunneld daemon.

pmtunneldopts string Sets the options for the pmtunneld daemon.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
291

Variable Data
type

Description

policydir string Sets the directory in which to search for policy
files

Default: /etc/opt/quest/qpm4u/policy

policyfile string Sets the main policy filename.

Default: pm.conf

policymode string Specifies the type of security policy to use,
pmpolicy or Sudo.

Default: sudo

reconnectagent boolean
(YES/NO)

Allows backwards compatibility with older
agents on a policy server. Settings on policy
server and agents must match.

Default: NO

reconnectclient boolean
(YES/NO)

Allows backwards compatibility with older clients
on a policy server. Settings on policy server and
client must match.

Default: NO

selecthostrandom boolean
(YES/NO)

Set to yes to attempt connections to the list of
policy servers in random order.

Set to no to attempt connections to the list of
policy servers in the order listed in pm.settings.

Default: YES

setnonreserveportrange integer
integer

Specifies a range of non-reserved ports to use as
source ports by the client and agent.

l Minimum non-reserved port is 1024.

l Maximum non-reserved port is 31024.

The full range for non-reserved ports is 1024 to
65535.

For more information, see Restricting port
numbers for command responses on page 142.

setreserveportrange integer
integer

Specifies a range of reserved ports to use as
source ports by the client when making a
connection to the policy server.

l Minimum reserved port is 600.

l Maximum reserved port is 1023.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
292

Variable Data
type

Description

The full range for reserved ports is 600 to 1023.

For more information, see Restricting port
numbers for command responses on page 142.

setutmp boolean
(YES/NO)

Specifies whether pmlocald adds a utmp entry for
the request.

Default: YES

shortnames boolean
(YES/NO)

Enables or disables short names usage. Setting
shortnames to yes allows the use of short (non-
fully qualified) host names. If set to no, then the
Privilege Manager for Unix components will
attempt to resolve all host names to a fully
qualified host name.

Default: YES

syslog boolean
(YES/NO)

Set to yes to send error messages to the syslog
file as well as to the Privilege Manager for Unix
error log.

Default: YES

For more information, see Local logging on page
152.

thishost string Sets the client's host name to use for
verification. Specifying a thishost setting causes
the Privilege Manager components to bind
network requests to the specified host name or
IP address. If you set thishost to the underscore
character (_), requests bind to the host's
primary host name.

No default value.

tunnelport integer Sets the TCP/IP port to use for the pmtunneld
daemon.

Default: 12347

For more information, see Configuring
pmtunneld on page 143.

tunnelrunhosts list Identifies the hosts on the other side of a
firewall.

No default value.

For full details of how to configure your system
across a firewall, see Configuring firewalls on

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
293

Variable Data
type

Description

page 141.

validmasters list Identifies a list of policy servers that can be
identified using the pmrun –m <master> option, but
that will not be used when you run a normal
pmrun command. This is useful for testing
connections to a policy server before bringing it
on line.

No default value.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Variables
294

Appendix C

Appendix:Privilege Manager for Unix Flow
Control Statements

You can use the following reserved words to control the flow of logic in the pmpolicy file.

Statement Description

accept, reject Accept or reject the submitted request.

break Break out of a while or for loop.

continue Skip the rest of the loop body and continue to the next iteration of the
loop.

do-while Perform the loop body multiple times until an expression is true, evalu-
ating the expression after running the statement.

for loop c-style for loop.

for loop Perform the loop body for each element in a list.

function Stand-alone subroutine, allowing you to reuse policy.

if-else Used to determine which statement to run next based on whether an
expression is true or false.

include Include the named policy file.

procedure /
function

Stand-alone subroutine, allowing you to reuse policy.

readonly Mark a variable as read-only.

readonlyexcept Mark all variables as read-only except for the specified list.

return Return from a function or procedure.

switch Used to determine which statement to run next based on whether an
expression matches one of several values.

while Perform the loop body multiple times until an expression is true, evalu-
ating the expression before running the statement.

Table 33: Control flow reserved words

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Flow Control Statements
295

accept, reject

Syntax

accept [from ["user"][, ["submithost"][, ["command"]
[, ["runhost"]]]]] [when conditional-expression]
[with optional-statements-before-execution];

reject ["reject-text"] [from ["user"][, ["submithost"]
[, ["command"][, ["runhost"]]]]]
[when conditional-expression];

Description

The accept statement accepts the job request submitted by a user. The reject statement
denies the request. After a command is accepted, nothing else in the configuration script is
run. If neither an accept nor reject statement is reached while parsing the configuration
file, the command is rejected by default. A default reject message is displayed to the user
if no message is specified with the reject statement. If a null string is specified, then the
command is rejected silently.

The expanded form of the accept and reject statements make it possible to accept or reject
a command based on the criteria "who", "what", and "where" without using conditional
statements.

Examples

adminusers = {"dan","robyn"};
adminprogs = {"hostname","kill","csh","ksh"};
if (user in adminusers && command in adminprogs)
{

runuser = "root";
if (user == "dan" && !officehours)
{

reject "You can't use “ + runcommand + “ outside office hours\n";
#custom msg

}
if (user == "robyn" && !officehours)
{

if (!getuserpasswd(user))
reject ; #use default reject msg

}

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Flow Control Statements
296

accept;
}
else
{

reject ""; #reject silently – no msg displayed to the user
}

break

Syntax

break;

Description

The break statement exits a loop and terminates cases. Use to force an immediate exit in
case statements and looping statements such as for, while, and do-while statements.

Example

for (oneuser in userlist)
{

if (oneuser == "root")
{

break;
}
print(oneuser);

}

continue

Syntax

continue;

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Flow Control Statements
297

Description

Use the continue statement in the body of a C-style for loop, while, or do-while
statement to skip the rest of the statements in the body of the loop and start again from
the top of the loop.

Example

for (oneuser in userlist)
{

if (oneuser == "root")
{

continue;
}

print(oneuser);
}

do-while

Syntax

dostatement while (expression) ;

Description

The do-while statement is a looping statement. It repeatedly runs the specified
statement until the specified expression evaluates to false (the value 0) or it encounters
a break statement.

The specified statement runs at least once (unlike the while statement, which may
terminate immediately).

Use a statement block in the form { statement ... } to run multiple statements in the loop.
One Identity recommends using a statement block for readability.

Examples

This prints the values 1,2,3,4,5:

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Flow Control Statements
298

x=1;
do print(x++); while (x <= 5);

This prints the values 1,2,3,4,5 using a statement block:

x = 1;
do {

print(x);
x++;

} while (x <= 5);

This prints the values 1,2,3 because the break statement terminates the loop:

x=1;
do {

if (x > 3) break;
print(x++);

} while (x <= 5);

for loop

Syntax

for ControlValue = StartValue to StopValue
[step increment] {

initializer statements ;
conditional expression ;
update expression ;
initializer statements ;
conditional expression ;

}

Description

The for statement is a looping statement. It runs one or more initializer statements and
then evaluates the conditional expression. Use a comma to separate multiple initializer
statements. If the conditional expression evaluates to true (any non-zero value), then it
runs the specified statement. It runs the update expression (if present) immediately after
it runs the specified statement. The for statement is terminated if the conditional
expression evaluates to false (the value 0), or it encounters a break statement.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Flow Control Statements
299

Typically, a for statement contains one initializer statement, a conditional expression, and
an update expression that all operate on the same variable.

Use a statement block in the form { statement ... } to run multiple statements. One
Identity recommends using a statement block for readability.

Examples

This prints the values 1,2,3,4,5:

for (x = 1; x <= 5; x++) print(x);

This prints the values 1,2,3,4,5. (Note that this example does not have an update
expression and it uses a statement block):

for (x = 1; x <= 5;) {
print(x);
x++;

}

This prints the values 1,2,3 because the break statement terminates the loop:

for (x = 1; x <= 5; x++) {
if (x > 3) break;
print(x);

}

for loop

Syntax

for (variable in expression) statement

Description

The for statement is a looping statement. The specified expressionmust be an array. It
runs the specified statement once for each array element, and assigns it to the specified
variable in turn. The for statement terminates when the specified expression does not
evaluate to an array value, either when each element of the array has been iterated, or it
encounters a break statement.

Use a statement block in the form { statement ... } to run multiple statements. One
Identity recommends using a statement block for readability.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Flow Control Statements
300

Examples

This prints the values 1,2,3,4,5:

for (x in {1,2,3,4,5}) print(x);

This does not print any value, since the expression does not evaluate to an array:

for (x in "foo") print(x);

This prints the values 1,2,3 because the break statement terminates the loop:

values = {1,2,3,4,5};
for (x in values) {

if (x > 3) break;
print(x);

}

function

Syntax

function (parameter = expression, ...) { statement ... }

Description

See procedure / function on page 304 for a full description of function.

if-else

Syntax

if (expression) statement

if (expression) statement else statement

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Flow Control Statements
301

Description

The if-else statement is a conditional statement. It runs the specified statement if the
specified expression evaluates to true (a non-zero value). If the else part is present, it
runs the associated statement if the expression evaluates to false (the value 0).

Use a statement block of the form { statement ... } to run multiple statements. One
Identity recommends using a statement block for readability.

Examples

Accept if the user is contained in the set of trusted users, otherwise continue
execution at the next statement:

trustedusers = {"jamie","corey","robyn"};
if (user in trustedusers)

accept;

Accept if the user is contained in the set of trusted users, otherwise reject:

trustedusers = {"jamie","corey","robyn"};
if (user in trustedusers)

accept;
else

reject;

Note the use of statement block to handle multiple statements:

trustedusers = {"jamie","corey","robyn"};
if (user in trustedusers) {

print("accepted");
accept;

} else {
print("rejected");
reject;

}

include

Syntax

include file-name

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Flow Control Statements
302

Description

The Privilege Manager for Unix configuration language contains the include statement,
which is used to call out to other configuration files. By splitting your configuration file up
into several smaller files, you can eliminate clutter. You can also hand-off control over
certain aspects of configuration to different people, by giving them access to the subsidiary
configuration files.

If an accept or reject is done within the included file, control never returns to the original
file. On the other hand, if no accept or reject is done in the included file, execution will
proceed to the end of that file, and then resume in the original file immediately after the
include statement.

If a full pathname is not specified, the value of the policydir setting from the
/etc/opt/quest/qpm4u/pm.settings file will be pre-pended to the filename.

When handing off control to a subsidiary configuration file whose contents are controlled by
a questionable person, you might want to "fix" certain Privilege Manager for Unix variable
values so that they cannot be changed by the subsidiary file. Use the readonly and
readonlyexcept statements for this purpose.

As an example, you may have an Oracle® database administrator, who you want to be able
to administer certain Oracle® programs. Each of those programs is to run as the "oracle"
user. You would like the DBA to be able to grant or deny access to these programs and this
account without your involvement, but you certainly do not want to give this person power
over non-Oracle® parts of the system.

Specify the file to be included as a string expression; it may contain variables. For
example, include "/etc/ + usr + ".conf";.

The following configuration file fragment hands off control to a subsidiary configuration file
called, /etc/pmorcle.conf, and ensures that if an accept is done within this file, the job
being accepted can only run as the oracle user.

Examples

oraclecmds = {"oradmin", "oraprint", "orainstall"};
if(command in oraclecmds)
{

runuser = "oracle";
readonly {"runuser"};
include "/etc/pmoracle.conf";
reject;

}

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Flow Control Statements
303

procedure / function

Syntax

procedure parameter (argument-list)
{
statement ...
parameter = expression;
}

function parameter (argument-list)
{
statement ...
parameter = expression;
}

Description

A procedure is a named block of code that runs a sequence of one or more statements, and
which may declare zero or more parameters. Each parameter is a variable that may
optionally have a default value. If a parameter is declared with a default value, then all
following parameters must also be declared with a default value. A procedure terminates
when the final statement is run or when a return statement is run.

Variables and parameters declared within the procedure have local scope and are
discarded when the procedure terminates. If an identifier is referenced within a procedure,
the local scope of the procedure is checked first for a variable or parameter with a
matching name. If one cannot be found, then the containing scope is checked for a variable
with a matching name. If a matching variable still cannot be found, a new variable is
declared, with a scope local to the procedure.

A procedure is invoked by specifying the name of the procedure and providing values for
each parameter in a comma-separated argument list contained within parentheses. No
argument is required if the matching parameter has a default value; in this case, the
parameter will be assigned its specified default value.

A procedure may be declared using the procedure or function keywords. Historically, a
function returns a value whereas a procedure does not; however, the parser will permit
any procedure to return a value regardless of the keyword used. The choice of using the
procedure or function keyword is stylistic. If a procedure ends without a return statement,
a variable with the same name as the procedure is treated as the return value.

Examples

Procedure with no parameters:

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Flow Control Statements
304

procedure include_defaults() {
include "/opt/quest/qpm4u/policies/defaults.conf";

}

include_defaults();

Procedure with two parameters, one of which has a default value:

procedure process_include_file(fname, fdir="") {
topdir = "/opt/quest/qpm4u/policies";
fpath = topdir + "/" + (fdir == "" ? "" : fdir + "/") + fname;
if (fileexists(fpath)) {

include fpath;
}

}

process_include_file(user + ".conf");
default value of "" is assigned to parameter fdir

process_include_file(user + ".conf", "users");
parameter fdir is assigned the value "users"

Procedure with a parameter that masks a top-level variable with the same name.
This print 1,2,1:

x = 1;

procedure foo(x) {
print(x);

}

print(x);
foo(2);
print(x);

readonly

Syntax

readonly list

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Flow Control Statements
305

Description

Use the readonly statement to make a variable read-only. This means that its current
value is frozen, so that no configuration file statement can change it. The purpose of this
statement is to allow a system administrator to freeze the value of certain variables
before calling out to another configuration file using the include statement. By safely
freezing certain variable values, control over the other configuration file can safely be
given to other, less-trusted personnel, knowing that they will not be able to abuse their
privilege and gain unauthorized access to parts of the system that they should not be
tampering with.

Examples

runuser = "jamie";
readonly {"runuser","runhost","runcommand"};
runuser = robyn;
print(runuser);

This policy will cause an execution error. Running pmcheck displays a message
similar to this:

**Policy execution error in /etc/opt/quest/qpm4u/policy/pm.conf, line 3 Cannot
assign value to readonly identifier runuser

readonlyexcept

Syntax

readonlyexcept list

Description

The readonlyexcept statement is related to the readonly statement. The readonlyexcept
statement makes all variables read-only, except those listed in the statement. The
readonlyexcept statement has the same syntax as the readonly statement.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Flow Control Statements
306

Examples

runhost = "myhost";
runuser = "jamie";
readonlyexcept {"runuser"};
runhost = "newhost"; // fails, runhost still equals "myhost"
runuser = "corey"; // runuser now equals "corey"

This policy will cause an execution error. Running pmcheck displays a message
similar to this:

**Policy execution error in /etc/opt/quest/qpm4u/policy/pm.conf, line 3 Cannot
assign value to readonly identifier runuser

return

Syntax

return [expression];

Description

return exits the current procedure/function and returns the value of expression.

Examples

function square (n){
n2 = n * n;
return n2;

}

print(square(10)); // prints "100"

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Flow Control Statements
307

switch

Syntax

switch (string)
{

case expression1:
statement1a; [statement1b; …] [break;]

case expression2:
statement2a; [statement2b; …] [break;]

default: statement3a; [statement3b; …] [break;]
}

Description

The switch statement tests whether an expression matches one of several values (each of
which is specified in a case statement) and branches accordingly. If a casematches the
value, execution will begin at that case falling through to subsequent cases until a break
statement occurs. The break statement forces an immediate exit from the switch
statement; it is optional.

The default statement runs if none of the cases match the value. This statement is
optional. If there is no default and none of the cases match the value, nothing happens.
Case statements can be in any order, but the default statement, if present, must occur after
all of the case statements.

Examples

switch (user) {
case "leslie":

runuser="sys";
break;

case "adrian":
accept;

case "cory":
case "jamie":

runuser = "root";
accept;

default:
reject;

}

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Flow Control Statements
308

switch (gidnum){
case 0: runuser="root"; break;
default: break;

}

See Example 9: Switch and case statements on page 133 for additional usage examples.

while

Syntax

while (expression) statement

Description

The while statement is a looping statement. It repeatedly runs the specified statement
while the specified expression evaluates to true (any non-zero value). The while statement
terminates when the specified expression evaluates to false (the value 0) or it encounters
a break statement.

The specified statementmay not run if the specified expression initially evaluates to false
(unlike the do-while statement, which always runs its specified statement at least once).

Use a statement block in the form { statement ... } to run multiple statements in the loop.
One Identity recommends using a statement block for readability.

Examples

This prints the values 1,2,3,4,5:

x = 1;
while (x <= 5) print(x++);

This prints the values 1,2,3,4,5 and uses a statement block:

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Flow Control Statements
309

x = 1;
while (x <= 5) {

print(x);
x++;

}

This prints the values 1,2,3 because the break statement terminates the loop:

x=1;
while (x <= 5) {

if (x > 3) break;
print(x++);

}

See Use the while loop on page 136 for more usage examples.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Flow Control Statements
310

Appendix D

Appendix:Privilege Manager for Unix Built-in
Functions and Procedures

This section documents the syntax and usage of the built-in functions and procedures that
are available to use within the policy file. They are listed in the following categories:

l Environment functions

l Hash table functions

l Input and output functions

l LDAP functions

l List functions

l Miscellaneous functions

l Password functions

l Remote access functions

l String functions

l User information functions

l Authentication Services functions

Environment functions

These are the built-in environment functions available to use within the policy file.

Name Description

getenv Return the value of an environment variable in runenv.

getlistsetting Return a list of the settings in the current policy server host settings
file.

getnumericsetting Return the integer of the numeric setting in the current policy server

Table 34: Environment functions

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
311

Name Description

host settings file.

getstringsetting Returns the value of a string setting in the current policy server host
settings file.

getyesnosetting Returns the value of a yes/no setting in the current policy server host
settings file.

keepenv Remove all except the specified variables from the runenv.

policygetenv Set the value of the local variable to the value of the environment
variable on the policy server.

policysetenv Locally set the environment variable on the policy server host.

policyunsetenv Locally unset an environment variable on the policy server.

setenv Set a runtime environment variable.

unsetenv Remove an environment variable from the runtime environment

getenv

Syntax

string getenv (string name [, string value])

Description

getenv returns the value of the specified environment variable from the runenv variable.

Example

print the value of HOME if defined, otherwise print "none"
print(getenv("HOME", "none"));

Related Topics

keepenv

setenv

unsetenv

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
312

getlistsetting

Syntax

list getlistsetting (string <variable_name>)

Description

getlistsetting returns a list of the settings in the pmpolicy server host settings file. If the
named config is not present in the policy server host setting file, it returns an empty list.

Example

get the master list setting
submitMasterList(getlistsetting("submitmasters"));

Related Topics

getstringsetting

getnumericsetting

getyesnosetting

getnumericsetting

Syntax

int getnumericsetting (string <variable_name>)

Description

getnumericsetting returns the integer of the numeric setting in the pmpolicy server host
settings file. If the named config is not present in the policy server host setting file, it
returns zero.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
313

Example

get the value for master delay time
delayTime(getnumericsetting("masterdelay"));

Related Topics

getstringsetting

getlistsetting

getyesnosetting

getstringsetting

Syntax

string getstringsetting (string variable_name)

Description

getstringsetting returns the value of a string setting in the pmpolicy server host settings
file. If the named config is not present in the policy server host setting file, it returns an
empty string.

Example

if (getstringsetting("eventLogQueue") == false) {
reject;

}

Related Topics

getnumericsetting

getlistsetting

getyesnosetting

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
314

getyesnosetting

Syntax

boolean getyesnosetting (string <variable_name>)

Description

getyesnosetting returns the value of a yes/no setting in the current policy server host
settings file. If the named config is not present in the policy server host setting file, it
returns false.

Example

if (getyesnosetting("sysLogQueue") == false) {
reject;

}

Related Topics

getstringsetting

getnumericsetting

getlistsetting

keepenv

Syntax

keepenv(string env1 [, string env2, …])

Description

The keepenv procedure modifies the runenv variable to keep only those environment
variables whose names are specified. All others are deleted from the runtime environment.
This is used to constrain which environment variables a user may keep when running
programs through Privilege Manager for Unix or Safeguard for Sudo when using the
pmpolicy style policy.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
315

Example

reset the environment to the minimum
keepenv("PATH", "TERM", “HOME”, “USER”);

Related Topics

setenv

unsetenv

policygetenv

Syntax

string policygetenv (string name [, string value])

Description

policygetenv returns the value of the specified environment variable from the policy
server.

Example

print the value of HOME if defined, otherwise print "none"
print(policygetenv("HOME", "none"));

Related Topics

keepenv

setenv

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
316

policysetenv

Syntax

policysetenv (string variable, string value)

Description

The policysetenv procedure sets one or more environment variables in the policy server.

Example

#set the shell variable
policysetenv("SHELL", "/opt/quest/bin/pmsh");

Related Topics

keepenv

unsetenv

policyunsetenv

Syntax

unsetenv(string env1 [, env2, …+)

Description

The policyunsetenv procedure removes the named environment variable from the
policy server.

Example

The following example deletes the PAGER and EDITOR environment variables from the
policy server.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
317

policyunsetenv("PAGER", "EDITOR");

Related Topics

keepenv

unsetenv

setenv

Syntax

setenv (string name, string value)

Description

The setenv procedure sets one or more environment variables in the runenv variable.

Example

#set the shell variable
setenv("SHELL", "/opt/quest/bin/pmsh");

Related Topics

keepenv

unsetenv

unsetenv

Syntax

unsetenv(string env1 [, env2, …+)

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
318

Description

The unsetenv procedure removes the named environment variable from the runenv
variable.

Example

The following example deletes the PAGER and EDITOR environment variables from the
runtime environment.

unsetenv("PAGER", "EDITOR");

Related Topics

keepenv

setenv

Hash table functions

These are the built-in hash table functions available to use within the policy file.

Name Description

hashtable_add Add a new list value to a hash table.

hashtable_create Create a new hash table.

hashtable_enum Enumerate entries in a hash table.

hashtable_import Import a hash table from a file.

hashtable_lookup Look up a value in a hash table.

Table 35: Hash table functions

hashtable_add

Syntax

int hashtable_add (int hid, string key , list value)

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
319

Description

hashtable_add adds a new list value to the specified hash table, associated with the
specified key.

Returns 0 if the hash table was successfully added, otherwise returns non-zero.

Example

hid=hashtable_create();
hashtable_add(hid, "unxadm", {"johnd", "davel", "jamesp"});
hashtable_add(hid, "winadm", {"marym", "stevec", "janel"});
print("Windows Admin Group:" + hashtable_lookup(hid, "winadm"));

Related Topics

hashtable_add

hashtable_import

hashtable_lookup

hashtable_create

Syntax

int hashtable_create ()

Description

hashtable_create creates a new hash table that can be used to store key-value pairs in a
format that allows more efficient searching than an array.

Returns an identifier that you can use to add entries to and search the hash table.

Example

hid=hashtable_create();
hashtable_add(hid, "unxadm", {"johnd", "davel", "jamesp"});
hashtable_add(hid, "winadm", {"marym", "stevec", "janel"});
print("Windows Admin Group:" + hashtable_lookup(hid, "winadm"));

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
320

Related Topics

hashtable_import

hashtable_add

hashtable_lookup

hashtable_enum

Syntax

string hashtable_enum (int hid, [int reset])

Description

hashtable_enum returns the next entry in a hash table.

Example

hid=hashtable_create();
hashtable_add(hid, "unxadm", {"johnd", "davel", "jamesp"});
hashtable_add(hid, "winadm", {"marym", "stevec", "janel"});
print("Windows Admin Group:" + hashtable_lookup(hid, "winadm"));
for (x=hashtable_enum (hid,1); x!=""; x=hashtable_enum(hid,0)) {

printf("Table contains key=%s\n", x);
}

Related Topics

hashtable_import

hashtable_add

hashtable_lookup

hashtable_import

Syntax

int hashtable_import (int hid, string filename)

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
321

Description

hashtable_import reads a specified file and uses the contents to create a hash table
containing hash table entries, one per line, consisting of a single hash key, a colon, and a
comma-separated list of hash values. The file may also contain comments delimited by the
character.

If successfully imported, it returns the number of entries in the hash table.

Example

#File admgroups.txt contains the formatted text
unxadm:john,bob,fred,jane
winadm:mary,chris,henry

#policy loads this file into a hashtable that identifies the group
permissions,
hid=hashtable_create();
count=hashtable_import(hid, "/etc/opt/quest/qpm4u/tables/admgroups.txt");
printf("Import loaded %d groups\n", count);
unxadm=hashtable_lookup(hid, "unxadm");
if (user !in unxadm)
{

reject "You are not authorized to run this command";
}

Related Topics

hashtable_create

hashtable_add

hashtable_lookup

hashtable_lookup

Syntax

list hashtable_lookup (int hid, string key)

Description

hashtable_lookup searches the specified hash table for the key.

If it finds the key, it returns the associated list, otherwise it returns an empty list.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
322

Example

hid=hashtable_create();
hashtable_add(hid, "unxadm", {"johnd", "davel", "jamesp"});
hashtable_add(hid, "winadm", {"marym", "stevec", "janel"});
print("Windows Admin Group:" + hashtable_lookup(hid, "winadm"));

Related Topics

hashtable_create

hashtable_import

hashtable_add

Input and output functions

These are the built-in input and output functions available to use within the policy file.

Name Description

fprintf Write a string to a file on the policy server.

input Request input from the user.

inputnoecho Request input from the user without echoing to the screen.

print Print a string to stdout with newline.

printf Print a string to stdout.

printnnl Print a string to stdout without newline.

printvars Print the policy variables to stdout.

readdir Return the list of entries in a directory as a string.

readfile Read from a file on the policy server.

sprintf Format a string.

syslog Log a message to the syslog file.

Table 36: Input and output functions

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
323

fprintf

Syntax

fprintf (string filename, string format [, string expression...])

Description

The fprintf function is similar to printf except that the first argument is a filename. It
appends the formatted string to the specified file.

For more information about formatting parameters, see the printf(3)man page.

Example

This example appends the string "End of file" to the pmlog file in the specified format.

fprintf("/var/adm/pmlog", "%s\n", "End of file";

Related Topics

printf

print

input

Syntax

string input(string prompt)

Description

input prompts the user to enter a single line of input and returns the entered string.

If the user enters a string, use the atoi function to convert the string to an integer.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
324

Example

menu_selection = input("Enter your selection: ");
switch(atoi(menu_selection)) {
…

}

Related Topics

atoi

inputnoecho

inputnoecho

Syntax

string inputnoecho(string prompt)

Description

inputnoecho prompts the user for a single line of input. The input is not displayed on the
screen as it is typed.

Example

Instr = inputnoecho("Enter Selection: ");
if (Instr in allowed_strs) {
….

}

Related Topics

input

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
325

print

Syntax

print (expression exp1 [, expression exp2, ...])

Description

The print procedure prints the expression to stdout as a single line terminated with a
newline character. If there is more than one argument, they are printed with a space
delimiter. If there are no arguments, such as print(), the print result is a newline only. You
can use variables, numbers, strings, lists or expressions as arguments in this function.

Example

print("Hello world");

Related Topics

fprintf

printf

printnnl

printvars

printf

Syntax

printf (string format [, expression exp1, ...]);

Description

The printf procedure prints a formatted string to stdout.

For more information about formatting parameters, see the printf(3)man page.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
326

Example

#this prints " 10" with no newline.
printf("%4d", 10);

#this prints "cory" preceded by 16 blank spaces, terminated with a newline.
user="cory";
printf("%-20.20s\n", user);

Related Topics

fprintf

print

printnnl

printvars

printnnl

Syntax

printnnl (expression expr1 [, expression expr2, ...])

Description

The printnnl procedure is similar to the print function except that it does not terminate the
output with a newline character.

Related Topics

fprintf

print

printf

printvars

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
327

printvars

Syntax

printvars();

Description

The printvars procedure prints all Privilege Manager for Unix variables to the user’s
screen. It is useful for debugging configuration file policies.

Related Topics

fprintf

print

printf

printnnl

readdir

Syntax

string readdir (string path [, string filter])

Description

readdir reads the contents of the directory identified by path, and returns the list of files as
a string. If you supply a filter, it applies a glob-style filter and only returns those files that
match the filter in the string. If you do not supply a fully qualified path, it assumes the
path is relative to the path identified by the policyDir setting in the pm.settings file.

Example

#find all *.profile files in the profiles directory and include any found
incfiles=readdir("profiles", "*.profile");
incfile_list=split(incfiles);
for onefile in incfile_list {

include onefile;

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
328

}

Related Topics

keepenv

setenv

unsetenv

readfile

Syntax

string readfile (string filename)

Description

The readfile function reads the contents of the specified file and returns the contents as a
single string. Note that any new lines in the file will be present in the string returned by
readfile. If the file does not exist, it rejects the session and produces a syntax error.

Example

#print a welcome msg from a file in /etc/
x=readfile("/etc/custom_welcome.txt");
print (x);

Related Topics

input

sprintf

Syntax

string sprintf (string format [, expression expr, ...])

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
329

Description

The sprintf function returns a formatted string.

For more information about formatting parameters, see the printf(3)man page.

Example

printf("User= %-8.8s Application: %s\n", user, app);

Prints the same as:

a=sprintf("User= %-8.8s Application: %s", user, app);
print(a);

syslog

Syntax

syslog (string format [, expression expr, ...])

Description

syslog sends a formatted message to syslog as a LOG_INFOmessage.

For more information about configuring syslogmessages, see the syslog(3)man page.

Example

syslog("Accepted request from %s@%s", user, submithost);

LDAP functions

These are the built-in LDAP functions available to use within the pmpolicy file.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
330

Name Description

ldap_ bind Bind an LDAP connection to the given credentials.

ldap_count_
entries

Count the number of entries returned by ldap_search.

ldap_dn2ufn Convert a DN to a user-friendly format.

ldap_explode_dn Return the elements of a DN.

ldap_first_
attribute

Obtain the first attribute in an LDAP entry.

ldap_first_entry Obtain the first entry returned by ldap_search.

ldap_get_attrib-
utes

Return all attribute names in an LDAP entry.

ldap_get_dn Return the DN of an entry.

ldap_get_values Return a list of the values for an attribute.

ldap_next_
attribute

Return the next attribute in an LDAP entry.

ldap_next_entry Return the next entry returned by ldap_search.

ldap_open Open a connection to an LDAP server.

ldap_search Search the LDAP directory.

ldap_unbind Close the LDAP connection.

Table 37: LDAP functions

ldap_ bind

Syntax

int ldap_bind(integer ldapid, string userdn [, string password [, boolean trace]])

Description

ldap_ bind binds an LDAP connection to the specified credentials. The LDAP ID must be a
valid LDAP connection ID returned by ldap_open. You can require an optional password.

If the optional trace parameter is set to true, any errors or warnings from the LDAP
function are written to stdout.

If successful, it returns 0; otherwise it returns non-zero or an undefined variable.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
331

Example

rc=ldap_bind(ldapid, "cn=admin", "Secretpassword");
if ((!defined rc) || (rc != 0))
{

reject "Bind to ldap directory failed";
}

ldap_count_entries

Syntax

int ldap_count_entries(int ldapid, ldapresult searchresult[, boolean trace])

Description

ldap_count_entries returns the number of LDAP entries found by a previous call to
ldap_search.

If the optional trace parameter is set to true, any errors or warnings from the LDAP
function are written to stdout.

Example

search for all Users at base level
searchresults= ldap_search(ldapid, 'ou=Users,dn=ldap,dn=domain,dn=com',

'onelevel', '(objectClass=*)');
if (ldap_count_entries(ldapid, searchresults) == 0)
{

reject "Found no users";
}

Related Topics

ldap_dn2ufn

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
332

ldap_dn2ufn

Syntax

string ldap_dn2ufn(string dnstr[, boolean trace])

Description

ldap_dn2ufn converts a DN formatted string to a more user friendly format returned
as a string.

If the optional trace parameter is set to true, any errors and warnings from the LDAP
function are written to stdout.

Example

ufn=ldap_dn2ufn("uid=jsmith,ou=Users,dn=directory,dn=ourdomain,dn=com");
print(ufn);

#prints the output:
#jsmith, Users, directory, ourdomain, com

Related Topics

ldap_explode_dn

ldap_explode_dn

Syntax

list ldap_explode_dn(string dnstr [, boolean noTypes[, boolean trace]])

Description

ldap_explode_dn returns a list of strings composed of the elements of the specified DN. If
the optional noTypes parameter is set to true, the types are stripped from the exploded
values. The default for noTypes is false.

If the optional trace parameter is set to true, any errors or warnings from the LDAP
function are written to stdout.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
333

Example

dnlist=ldap_explode_dn
("uid=jsmith,ou=Users,dn=directory,dn=ourdomain,dn=com");
stripped=ldap_explode_dn
("uid=jsmith,ou=Users,dn=directory,dn=ourdomain,dn=com");
print(dnlist);
print(stripped);

#prints the following output
#{ uid=jsmith ou=Users dn=directory dn=ourdomain dn=com}
#{jsmith, Users, directory, ourdomain, com}

Related Topics

ldap_first_attribute

ldap_first_attribute

Syntax

string ldap_first_attribute(int ldapid, ldapentry entry[, boolean trace])

Description

ldap_first_attribute returns the first attribute name in the ldapentry returned by a
previous call to ldap_first_entry or ldap_next_entry.

If not present, returns an empty string. If the optional trace parameter is set to true, any
errors or warnings from the LDAP function are written to stdout.

Example

str=ldap_first_attribute(ldapid, entry);
while (length(str) > 0) {

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
334

#process attribute
…
str=ldap_next_attribute(ldapid, entry);

}

Related Topics

ldap_get_attributes

ldap_first_entry

Syntax

int ldap_first_entry(int ldapid, ldapresult, result[, boolean trace])

Description

ldap_first_entry returns the first entry from the list of results returned by ldap_search if
present, otherwise returns an empty entry.

If the optional trace parameter is set to true, any errors and warnings from the LDAP
function are written to stdout.

Example

entry=ldap_first_entry(ldapid, searchresults);
while(entry) {

func_process_entry(entry);
entry=ldap_next_entry(ldapid, entry);

}

Related Topics

ldap_get_attributes

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
335

ldap_get_attributes

Syntax

list ldap_get_attributes(int ldapid, ldapentry entry[, boolean trace])

Description

ldap_get_attributes returns the full list of attribute names in an ldapentry returned by a
previous call to ldap_first_entry or ldap_next_entry.

If none are present, it returns an empty list. If the optional trace parameter is set to true,
any errors or warnings from the LDAP function are written to stdout.

Example

allattributes=ldap_get_attributes(ldapid, entry);
if (selected_attribute in allattributes) {

#process matching attribute
}

Related Topics

ldap_get_dn

ldap_get_dn

Syntax

string ldap_get_dn(int ldapid, ldapentry entry[, boolean trace])

Description

ldap_get_dn returns the DN of the specified entry, as a string. ldapentry is a valid entry
returned by a previous call to ldap_first_entry or ldap_next_entry.

If the optional trace parameter is set to true, any errors or warnings from the LDAP
function are written to stdout.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
336

Example

dnstr=ldap_get_dn(ldapid,entry;

Related Topics

ldap_get_values

ldap_get_values

Syntax

list ldap_get_values(int ldapid, ldapentry entry, string attr[, boolean trace])

Description

ldap_get_values returns a list of values for the specified attribute from the given
LDAP entry.

If the optional trace parameter is set to true, any errors or warnings from the LDAP
function are written to stdout.

Example

values=ldap_get_values(ldapid, entry, "uid");
if (user !in values) {

reject "You are not authorized";
}

Related Topics

ldap_next_attribute

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
337

ldap_next_attribute

Syntax

string ldap_next_attribute(int ldapid, ldapentry entry[, boolean trace])

Description

ldap_next_attribute returns the next attribute name in the ldapentry returned by a
previous call to ldap_first_entry or ldap_next_entry.

If the optional trace parameter is set to true, any errors or warnings from the LDAP
function are written to stdout.

Example

str=ldap_first_attribute(ldapid, entry);
while (length(str) > 0) {

#process attribute
…
str=ldap_next_attribute(ldapid, entry);

}

Related Topics

ldap_next_entry

ldap_next_entry

Syntax

int ldap_next_entry(int ldapid, ldapentry entry[, boolean trace])

Description

ldap_next_entry returns the next entry from the series of results returned by ldap_search, if
present; otherwise it returns a NULL or empty entry.

If the optional trace parameter is set to true, any errors or warnings from the LDAP
function are written to stdout.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
338

Example

entry=ldap_first_entry(ldapid, searchresults);
while(entry) {

func_process_entry(entry);
entry=ldap_next_entry(ldapid, entry);

}

Related Topics

ldap_open

ldap_open

Syntax

ldapid ldap_open(string host [, int port [, boolean trace]])

Description

ldap_open opens a connection to the LDAP server on the specified host (identified by
hostname or IP address) and port number. The default port number is 389. Use the
returned LDAP connection ID as the first parameter to the other LDAP functions.

If the optional trace parameter is set to true, any errors or warnings from the LDAP
function are written to stdout.

If successful, it returns a valid LDAP connection ID; otherwise it returns an
undefined variable.

The ldap_open library function has been deprecated in the open LDAP libraries. If supported
by the installed LDAP library, the ldap_open policy function calls ldap_initialize in
preference to ldap_open. However, ldap_initialize does not open the connection - the
connection is opened by the first operation attempted, so ldap_initialize will succeed
even if given an invalid host name. The ldap_open policy function displays the loaded LDAP
library path if a value of 1 is passed as the trace parameter to ldap_open. This makes it
easier to determine which LDAP library is used.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
339

Example

ldap = ldap_open('ldap.host');
if(!defined ldap){

reject "Connection to LDAP server failed" ;
}

ldap_search

Syntax

ldapresult ldap_search(int ldapid, string basedn, string scope, string filter [,
list attrList [, int attrOnly[, boolean trace]]])

Description

ldap_search performs a search in the LDAP directory starting at the location identified by
basedn. The ldapid is a valid connection ID returned by ldap_open.

The optional attrList parameter is the list of attributes to return in the results. This
defaults to an empty list. The filter contains the LDAP search string, in the format described
in RFC 4526.

The optional attrOnly parameter is a true or false value. When true, the results
contain only the attribute; when false the results return attributes and values. Default
setting is true.

Possible search scope:

l "base" - returns only the entry specified at the DN specified by basedn.

l "onelevel" - returns all matching entries from the next level down the directory.

l "subtree" - returns all matching entries below the basedn in the tree.

If the optional trace parameter is set to true, any errors or warnings from the LDAP
function are written to stdout.

Returns a special type ldapresult containing the results of the search in a format that you
can pass to the ldap_first_entry and ldap_next_entry functions.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
340

Example

#search for all Users at base level
searchresults= ldap_search(ldapid, "ou=Users,dn=ldap,dn=domain,dn=com",

'onelevel', '(objectClass=*)');
if (ldap_count_results(ldapid, searchresults) == 0)
{

reject "Found no users";
}

ldap_unbind

Syntax

ldap_unbind (int ldapid[, boolean trace])

Description

ldap_unbind closes the LDAP connection and frees all associated resources. The ldapidmust
be a valid LDAP connection returned by ldap_open.

If the optional trace parameter is set to true, any errors or warnings from the LDAP
function are written to stdout.

Example

ldapid = ldap_open('ldap.host');
if(defined ldapid){

rc=ldap_bind(ldapid, "cn=admin", "Secretpassword");
if ((defined rc) && (rc == 0)){

rc=func_search_for_user(ldapid);
ldap_unbind(ldapid);

}
}

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
341

LDAP API example

The pmpolicy language supports the use of LDAP calls to obtain data on the
following platforms:

l all versions of Linux on x86 supported by Privilege Manager for Unix

l all versions of Linux on x86-64 supported by Privilege Manager for Unix

l Solaris SPARC® 6 and above

l AIX 5.2 and above

l HP-UX PA-RISC 11 and above

The pmpolicy LDAP functions follow, as closely as possible, the API outlined in RFC 1823 to
ensure compatibility and ease of understanding.

The feature_enabled() function indicates whether the LDAP functions are available on a
particular policy server.

The following example illustrates the use of the LDAP functions.

if (!feature_enabled(FEATURE_LDAP) {
print("LDAP support is not available on this policy server");

} else {
ld_user = "cn=Directory Manager";
ld_passwd = "password";
ld_host = "ldapserver";
BASEDN="ou=People,dc=skynet,dc=local";
SCOPE="onelevel";
FILTER="(objectClass=*)";
ATTRLIST={};
ATTRONLY=false;

print("LDAP Server: " + ld_host);
print(" User DN: " + ld_user);
print(" Password: " + ld_passwd);
print("");
print(" Base DN: " + BASEDN);
print(" Scope: " + SCOPE);
print(" Filter: " + FILTER);
print("");

Open a connection to the directory server
ldapid = ldap_open(ld_host);
if(ldapid < 0) {

print("ldap_open failed");
reject;

}
bind to the directory
rc = ldap_bind(ldapid, ld_user, ld_passwd);

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
342

if(rc==0) {
perform the search
ld_results = ldap_search(ldapid, BASEDN, SCOPE, FILTER, ATTRLIST, ATTRONLY);
if(ld_results >= 0) {

how many results have been returned?
num = ldap_count_entries(ldapid, ld_results);
str = sprintf("Num results = %d", num);
print(str);
print("");
print("RESULTS");
print("");
if(num>0) {

Grab the first entry from the results
lentry = ldap_first_entry(ldapid, ld_results);
while(lentry) {

print the DN
dn = ldap_get_dn(ldapid, ld_results);
print("---- START OF ENTRY (" + dn + ") ----");
e = ldap_explode_dn(dn);
print(" Exploded DN: " + join(e, ', '));
e = ldap_explode_dn(dn, 1);
print("Exploded DN, no type names: " + join(e, ', '));
print(" User Friendly form: " + ldap_dn2ufn(dn));
print("");
oc = ldap_get_values(ldapid, lentry, "objectClass");
if("inetorgperson" in oc) {

gn = ldap_get_values(ldapid, lentry, "givenname");
sn = ldap_get_values(ldapid, lentry, "sn");
print(" Found a person, Name = " + gn[0] + " " + sn[0]);

}

attrs = ldap_get_attributes(ldapid, lentry);
print("Attributes: " + join(attrs, ", "));
Move through each attibute for the entry
attr = ldap_first_attribute(ldapid, lentry);
while(attr != '') {

print(" ATTR: " + attr);
Print the values for the given attribute
values = ldap_get_values(ldapid, lentry, attr);
print(" VALUES = { " + join(values, ", ") + " }");

move to the next attibute
attr = ldap_next_attribute(ldapid, lentry);

}
move to the next entry
lentry = ldap_next_entry(ldapid, ld_results);
print("---- END OF ENTRY (" + dn + ") ---- ");
print("");

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
343

}
print("");

}
print("-- END OF RESULTS --");

}
} else {

print("ldap_bind failed");
reject;

}

rc = ldap_unbind(ldapid);
str = sprintf("rc = %d", rc);
print(str);

}

Related Topics

feature_enabled on page 357

List functions

These are the built-in list functions available to use within the pmpolicy file.

Name Description

append Append to a list.

insert Insert a string or list into a list.

join Concatenate a list into a string.

length Return the length of a string, list, or array.

lsubst Substitute part of a string with another string throughout all or part of a list.

range Select a range of entries in a list.

replace Replace one or more strings in a list.

search Search a list for a string.

split Convert a string into a list.

splitSubst Convert a string into a list.

Table 38: List functions

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
344

append

Syntax

list append(list dest, list|string src1 [, list|string src2, ...])

Description

append creates a list constructed by appending the specified strings or lists src1, src2, etc.
to the end of the list dest and returns a new list.

Example

trustedusers = {"jamie", "cory", "robyn"};
a = append(trustedusers, "adrian");

sets a to the following list:

{"jamie", "cory", "robyn", "adrian"}

Related Topics

insert

join

insert

Syntax

list insert(list dest, int index, string src1, [, string src2, ...])

Description

insert constructs a list by inserting strings into a list at the specified position. Note that the
first element in the list is index: 0. If the index is greater than the length of the specified
list (for example, 999), then the strings append to the end of the list.

Returns the newly constructed list.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
345

Example

trustedusers={"jamie", "cory", "robyn"};
a=insert(trustedusers, 1, "leslie");

sets a to the list:

{"jamie", "leslie", "cory", "robyn"}

Related Topics

append

join

join

Syntax

string join(list X [, string delimiter])

Description

join returns a string constructed by concatenating each element of list X. Each element of
the string is separated by delimiter. The default delimiter is a space character.

Example

trustedusers={"jamie", "cory", "robyn"};
print(join(trustedusers, "\n"));

Prints the following string:

jamie
cory
robyn

Related Topics

append

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
346

insert

length

Syntax

int length(list|string X)

Description

length returns the number of elements in the specified list or the number of characters in
the specified string.

Example

trustedusers={"jamie", "cory", "robyn"};
print(length(trustedusers));

lsubst

Syntax

string lsubst(list X, string pattern, string replacement)

Description

lsubst substitutes part of a string with another string throughout all or a specified part
of a list X.

Example

print(lsubst({"xxxonexxx","xxxonexxx"},"one","two"));

#prints the following list
#"{xxxtwoxxx,xxxtwoxxx}"

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
347

range

Syntax

list range(list X, int begin, int end)

Description

The range function returns a subset of the elements from list X. The subset of elements in
the range specified by begin and end. Any value for end greater than the length of the list is
the same as end.

Example

trustedusers={"jamie", "cory", "robyn"};
a=range(trustedusers, 1, 2);

The value of a is set to: {"cory", "robyn"}

replace

Syntax

list replace(list X, int start, int end [, string s1, ...])

Description

The replace function deletes the elements between the start and end indices of the
specified list and inserts the supplied strings in their place. If you do not specify any
replacement string values, it replaces those elements with nothing; that is, it returns the
list with the specified portion omitted.

Example

trustedusers={"jamie", "cory", "robyn"};
a=replace(trustedusers, 1, 1, "sandy");
print(a); // prints "{jamie, sandy, robyn}"

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
348

search

Syntax

int search(list X, string pattern)

Description

The search function returns the index of the first matching instance of pattern in the
specified list. If there is no match, it returns -1.

The first element in the list is index:0.

Example

The following example prints the index number for "cory", which is 1:

a=search({"jamie","cory","robyn"},"c*"); print(a);

j* j followed by any number of characters.

j*e j followed by any number of characters, ending with an
e.

[jJ]* Upper or lower case j followed by any number of
characters.

[a-z] Any lower case character.

[^a-z] Any character except lower case characters.

j followed by a single
character.

Table 39: Search patterns

split

Syntax

list split (string X [, string delimiter] string omit_empty_elements)

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
349

Description

The split function is the opposite of join. It constructs a list by concatenating the
strings into a list. It separates each element in the list with a delimiting character,
which can be any character from the delimiter string. The default for delimiter is any
white space character.

A sequence of two or more contiguous delimiter characters in the parsed string is
considered to be a single delimiter. Delimiter characters at the start or end of the string
are ignored.

The omit_empty_elements argument defaults to true. If specified and is false, the empty
elements are not omitted from the resulting list.

Example

The following example returns the list: {"jamie", "cory", "robyn"}

a = split("jamie, cory, robyn", ", ")

Related Topics

splitSubst

splitSubst

Syntax

list splitsubst(string X, string delimiter)

Description

The splitsubst function splits a string X into a list. This function is similar to the split
function except that the delimiter contains the entire delimiter string.

Example

The following example returns the list: "john","jane,james"

a = splitsubst("john,,jane,james", ",,")

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
350

Related Topics

split

Miscellaneous functions

These are the built-in miscellaneous functions available to use within the pmpolicy file.

Name Description

atoi Translate a string representation of an integer to an integer.

authenticate_pam Authenticate a user on the primary policy server.

authenticate_
pam_toclient

Authenticate a user on the client.

basename Return the filename portion of a path.

comparehosts Check whether a host string matches a host definition.

datecmp Compare two date strings.

dirname Return the directory name portion of a path

feature_enabled Determine whether a feature is supported on the policy server

fileexists, access Check whether a file or path exists on the policy server.

getopt Examine a list of arguments for short options to break up command
lines for easier parsing.

getopt_long Examine a list of arguments for short or long options to break up
command lines for easier parsing.

getopt_long Examine a list of arguments for only long options to break up
command lines for easier parsing.

glob Match a string to a pattern.

ingroup Check whether a host is in the specified UNIX group on the policy
server.

innetgroup Check whether a user is in the specified NIS netgroup on the policy
server.

innetuser, inuser-
netgroup

Check whether a user is in the NIS netgroup or specified netgroup on
the policy server.

lineno Return the current line number in the policy file.

mktemp Create a temporary file. Same as mktemp system.

Table 40: Miscellaneous functions

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
351

Name Description

osname Return a string representation of the operating system.

quote Quote a string.

rand Generate a random number.

stat Obtain information about a file on the policy server.

strftime Format the current date/time as a string.

system Run a program on the policy server.

timebetween Check whether a given time is between two times.

tolower Convert string to lower case.

toupper Convert string to upper case.

uname Return system information on the policy server; output of uname
system command line.

atoi

Syntax

int atoi (string nptr)

Description

atoi converts the string representation of a decimal integer to an integer. If the string does
not contain a number, it produces a syntax error and rejects the session.

This function returns the converted integer.

Example

x=atoi("123");
printf("%d\n", x);

Returns: 123

Related Topics

insert

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
352

join

authenticate_pam

Syntax

int authenticate_pam (string user [, string service])

Description

The authenticate_pam function authenticates a user by means of the PAM (Pluggable
Authentication Method) APIs on the policy servers.

For more information on how to configure PAM, consult the documentation for your
platform.

The service parameter identifies the name of the PAM service to use to authenticate the
user. This can be any valid service name configured in the PAM system configuration. It
defaults to the PAM service "login".

This function returns 0 to indicate failure and 1 to indicate success.

Example

if (user=="paul" && basename(command)=="useradd")
{

if (!authenticate_pam(user, "sshd"))
{

reject;
}
runuser="root";
accept;

}

Related Topics

authenticate_pam_toclient

Utilizing PAM authentication

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
353

authenticate_pam_toclient

Syntax

int authenticate_pam_toclient (string user [, string service])

Description

The authenticate_pam_toclient function authenticates a user by means of the PAM
(Pluggable Authentication Method) APIs on the policy server.

For more information on how to configure PAM, consult the documentation for your
platform.

The service parameter identifies the name of the PAM service to use to authenticate the
user. This can be any valid service name configured in the PAM system configuration. It
defaults to the PAM service "login".

This function returns 0 to indicate failure and 1 to indicate success.

Example

if (user=="paul" && basename(command)=="useradd")
{

if (!authenticate_pam_toclient(user, "sshd"))
{

reject;
}
runuser="root";
accept;
}

Related Topics

authenticate_pam

Authenticate PAM to client

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
354

basename

Syntax

string basename (string pathname)

Description

basename returns the filename portion of a pathname. It does not check that either the
filename or path exist.

Example

print(basename("/var/adm/pm.log"));

Returns: "pm.log"

Related Topics

dirname

comparehosts

Syntax

int comparehosts(hoststring, hostpattern)

Description

comparehosts checks whether a host string (either host name or IP string) matches a host
definition, which could be a host name (such as, host1.a.b.com), IP address (such as,
10.10.10.1), netgroup (such as, @mygroup1), host pattern (such as, *.a.b.com) or IP address
(such as, 10.10.10.*).

This function honors the value of short names defined in pm.settings when resolving
host names.

Returns 1 if a match is found, 0 if no match is found.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
355

Example

if (comparehosts(submithost,"*.a.b.com"))
{

...
}

datecmp

Syntax

int datecmp(date1, date2)

Description

datecmp compares the two dates, which must be in the format YYYY/MM/DD or YY/MM/DD (in
which case 2000 is added to the year).

This function returns these values:

l -1: date1 < date2

l 1: date1 > date2

l 0: date1 = date2

Example

if (datecmp(startdate, enddate) >=0)
{

reject “startdate must be before enddate”;
}

dirname

Syntax

string dirname (string pathname)

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
356

Description

dirname returns the directory portion of a pathname. It does not check that the filename or
path exist.

Example

print(dirname("/var/adm/pmlog"));

Returns: "/var/adm"

Related Topics

basename

feature_enabled

Syntax

int feature_enabled (int feature)

Description

feature_enabled checks whether a particular feature is enabled on the policy server. Use
this function to detect support for platform-dependant features; currently these comprise
FEATURE_LDAP and FEATURE_VAS (defined as integer constants).

Returns true if the feature is enabled, otherwise false.

Example

if (feature_enabled(FEATURE_LDAP))
{

if (proc_do_ldap_authentication(user))
{

accept;
}

}

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
357

fileexists, access

Syntax

int fileexists (string path)

int access (string path)

Description

fileexists or access() determines whether the file fn or path exists on the policy server.

Returns true if the path name exists, false if not.

Example

if (fileexists("/opt/quest/pmc")) {
print ("PMC is installed.");

}

if (access("/opt/quest/pmc")) {
print ("PMC is installed.");

}

Related Topics

access

getopt

Syntax

int getopt (string argv, string optstring))

Description

getopt breaks up command lines for easier parsing and legal review. It examines a list of
arguments for short options, which is a dash followed by a single letter or parameter.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
358

Example

while ((option = getopt(args, "vh")) !=""){
print("Matched option",option);
}

Related Topics

getopt_long

getopt_long_only

optarg

optind

optopt

optreset

optstrictparameters

getopt_long

Syntax

int getopt_long (string argv, string optstring, string long_options))

Description

getopt_long breaks up command lines for easier parsing and legal review. It examines a
list of arguments for short or long options.

The function works in posixly correct mode and does not reorder arguments. However, if
you unset the POSIXLY_CORRECT environment option, it reorders the argv variable as it
scans, placing all nonoptions at the end of the list.

Example

while ((option = getopt_long(args, "vh",{"verbose","help"})) !=""){
print("Matched option",option);
}

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
359

Related Topics

getopt

optarg

opterr

optind

optopt

optreset

optstrictparameters

getopt_long_only

Syntax

int getopt_long_only (string argv, string optstring, string long_options))

Description

getopt_long breaks up command lines for easier parsing. It examines a list of arguments
for only long options.

The function works in posixly correct mode and does not reorder arguments. However, if
you unset the POSIXLY_CORRECT environment option, it reorders the argv variable as it
scans, placing all nonoptions at the end of the list.

Example

while ((option = getopt_long_only(args, "vh",{"verbose","help"})) !=""){
print("Matched option",option);
}

Related Topics

getopt

getopt_long

optarg

opterr

optind

optopt

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
360

optreset

optstrictparameters

glob

Syntax

int glob (string pattern, string str)

Description

globmatches a string to a pattern. This match is often used for filenames since the
patterns are the same ones that the UNIX shell uses for filename matching.

For more information, see the fnmatch(3)man page.

Returns true if the string matches the pattern, otherwise false.

Example

#this returns true because the “*” wildcard character matches any number of
any character
glob("a*b", "axyzb")

#this returns true because the “.” Is interpreted as a literal period char.
glob("a.*b", "a.fgb")

j* j followed by any number of characters.

j*e j followed by any number of characters, ending with an
e.

[jJ]* Upper or lower case j followed by any number of
characters.

[a-z] Any lower case character.

[^a-z] Any character except lower case characters.

j followed by a single
character.

Table 41: Search patterns

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
361

ingroup

Syntax

int ingroup (string user, string group)

Description

ingroup returns true if the specified user is in the specified UNIX group on the policy
server; otherwise returns false.

Example

if (ingroup("cory", "admin")) {
accept;

}

Related Topics

innetgroup

innetgroup

Syntax

int innetgroup (string netgroup, string host)

Description

innetgroup returns true if the specified host is in the specified NIS netgroup on the policy
server; otherwise returns false.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
362

Example

if (! innetgroup("submithosts", submithost)) {
reject "You are not permitted to submit a command from this host";

}

innetuser, inusernetgroup

Syntax

int innetuser (string netgroup, string user)

int inusernetgroup (string netgroupname, string username)

Description

innetuser or inusernetgroup returns true if the specified user is in the specified NIS
netgroup or other specified group on the policy server; otherwise the function
returns false.

Example

if (! innetuser("submitusers", user)) {
reject "You are not permitted to submit a command from this host";

}

if (! inusernetgroup("submitusers", user)) {
reject "You are not permitted to submit a command from this host";

}

Related Topics

innetgroup

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
363

lineno

Syntax

int lineno()

Description

lineno returns the current line number in the policy file.

Example

printf("TRACE: user:%s, cmd:%s, lineno:%d\n", user, command, lineno());

mktemp

Syntax

string mktemp (string template)

Description

mktemp returns a unique filename which is guaranteed not to exist on the policy server. Use
the mktemp function to create unique temporary filenames.

For more information, see the mktemp(3)man page.

Example

#generate a unique filename–the XXXXXX chars will be replaced to construct a
unique name
filename=mktemp("/tmp/pmXXXXXX");
print(filename); // prints "/tmp/pmAxK2de"

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
364

osname

Syntax

string osname()

Description

osname returns an internal string representation of the operating system on the policy
server, such as aix43-rs6k, linux-x86_64.

Example

printf("Policy server is running on OS:%s\n", osname());

quote

Syntax

string quote(string str [, string esc[, string surrounding_string]])

Description

The quote function puts the specified string between quotation marks. It inserts the "\"
(backslash) character as required to "quote" any occurrences of the characters in the
second argument to indicate that they are taken literally. The string is surrounded by a
"surrounding_string" and defaults to the value of esc, which is optional and defaults to
the value of the specified escape character. UThe quote function is useful when parsing
arguments into commands which are shell scripts. The default escape character is a
single quote.

Example

#this function will return: [This won\'t fail.]
quote("This won't fail.", "'");

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
365

rand

Syntax

int rand(int max)

Description

rand returns a random number less than the specified maximum.

Example

print a random item from a list
print(alist[rand(length(alist)]);

stat

Syntax

list stat (string fn)

Description

stat returns information about a specified file on the policy server.

If the file fn exists on the policy server, stat returns the following list of values:

l File size in bytes

l File owner as username

l File group as groupname

l File permissions as octal

l File change date in the format: YYYY/MM/DD

l File change time in the format: HH:MM:SS

l File change time in the format: seconds since the epoch

l File access date in the format: YYYY/MM/DD

l File access time in the format: HH:MM:SS

l File access time in the format: seconds since the epoch

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
366

l File modification date in the format: YYYY/MM/DD

l File modification time in the format: HH:MM:SS

l File modification time in the format: seconds since the epoch

l File inode number

strftime

Syntax

string strftime (string format)

Description

strftime formats dates and times.

For more information on the standard formats for dates and times, refer to the strftime
(3) man pages.

%d Day of the month

%H 24 hour format

%I 12 hour format

%j Day of the year

%m Month number

%M Minute

%S Seconds

%w Weekday name

Abbreviated month name

Table 42: Standard date and time formats

Example

strftime("%m/%d/%Y") strftime("%H:%M")

Returns the current date and time formatted, as follows:

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
367

03/17/2012
13:05

system

Syntax

string system(string command [, string input])

Description

The system function runs the specified command on the policy server, taking input from and
sending output to the users terminal. system can use an optional string parameter to pass
an input string to a command instead of prompting the user for input.

system sets the status variable to the exit status of the command. Typically, the exit status
of a command returns 0 if it is successful, and non-zero if it is not successful.

By default, the command runs as root, but you can set the subprocuser variable to a
different user under which to run the command.

For security reasons, One Identity recommends that you set the second parameter to " "
(empty quotation marks) for all system calls that do not require user input.

Example

#list the contents of the directory /etc – and store the result as a string in
"files".
#The exit status is stored in "status" and should be 0 if ls succeeds.
files=system("/bin/ls /etc");
if (status == 0) { …}

#perform a NIS lookup for all known hosts and store the result in "hosts"
variable.
hosts=system("ypcat hosts");
if (status==0) {…}

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
368

#send mail to "root" user – the second param contains the contents of the
mail, which
#will be passed to the mail program as standard input.
system("mail root", "mail from QPM4U\n");

timebetween

Syntax

int timebetween (int starttime, int endtime)

Description

The timebetween function returns a 0 or 1 depending on whether the current time is between
those specified. Use this function to determine whether a user is submitting a request
within valid business hours. Times must be specified using the 24-hour clock. Do not use
leading zeroes for time specifications, because this will be interpreted in octal. For
example, 12:30 am can be 30 or 2430.

Example

If (timebetween(800, 1630)) {
proc_working_hours_rules();

} else {
proc_outside_working_hours_rules();

}

tolower

Syntax

string tolower (string expr)

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
369

Description

tolower converts all upper case characters in the string to lower case. Leaves all other
characters unchanged. The tolower function is frequently used in search and comparison
expressions to make them case-insensitive.

Example

The following example accepts user inputs of "adrian", "Adrian", or "ADRIAN" and
returns "adrian".

#this returns "adrian"
tolower("Adrian");

toupper

Syntax

string toupper(string str)

Description

toupper returns a copy of str with all characters converted to uppercase, if possible. Some
characters such as !£$%^& or numbers do not have an uppercase equivalent.

Example

user = "ADRIAN"
if (user == toupper("Adrian")) {

accept; }
if (tolower(input("User:"))=="adrian")

accept;

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
370

uname

Syntax

list uname ()

Description

The uname function returns a list containing the following uname information from the
policy server:

l Operating System Name

l Network node hostname

l Operating System Release

l Operating System Version

l Machine (hardware) type

Example

print("Master OS is :" + uname());

Related Topics

osname

unsetenv

Password functions

These are the built-in password functions available to use within the pmpolicy file.

Name Description

getgrouppasswd Request a name and password of someone in the specified group on the
policy server or agent.

getstringpasswd Request a password from the user to match one generated using
pmpasswd.

getuserpasswd Request a user’s password on the policy server or agent.

Table 43: Password functions

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
371

getgrouppasswd

Syntax

int getgrouppasswd (string group [, int attempts])

Description

The getgrouppasswd function prompts you for a user name in the user group group on the
policy server and then prompts for that user’s password and authenticates the user on the
policy server. The user may try up to attempts times to correctly enter the password before
the function exits. The default number of allowed attempts is 3.

By default, this function authenticates the user on the policy server. Set the value of
getpasswordfromrun in pm.settings to yes to authenticate the user on the client instead.

Returns true if the user successfully authenticates on the policy server, otherwise returns
false if the user fails to authenticate after attempts tries.

Example

if (getgrouppasswd("admin", 2) == false)
{

reject;
}

Related Topics

getstringpasswd

getuserpasswd

getstringpasswd

Syntax

int getstringpasswd (string password [, string prompt] [, int attempts])

Description

getstringpasswd prompts you for a "code word" which has been encrypted using the
pmpasswd program and specified in the configuration file. You can also specify an optional

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
372

prompt, which defaults to "Password:". And, you can specify the number of attempts to
allow; the default is 3.

Returns true if the user enters the correct codeword; otherwise false.

Example

if (getstringpasswd("GhDByC9JGIRFI", "Enter password now: ", 4) == false)
{

reject ;
}

Related Topics

getgrouppasswd

getuserpasswd

pmpasswd

getuserpasswd

Syntax

int getuserpasswd (int user [, string prompt] [, int attempts])

Description

getuserpasswd prompts the specified user for a password. You can specify an optional
prompt, which defaults to "Password:". And you can specify the number of attempts to
allow; the default is 3.

By default, this function authenticates the user on the policy server. Set the value of
getpasswordfromrun in pm.settings to yes to authenticate the user on the client instead.

Returns true if the user enters the correct codeword; otherwise false.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
373

Example

if (getuserpasswd("admin", "Password: ", 1) == false) {
reject;

}

Related Topics

getgrouppasswd

getstringpasswd

Remote access functions

These are the built-in remote access functions available to use within the pmpolicy file.

Name Description

remotefileexists Check a file exists on a host.

remotegroupinfo Check if a group exists on a host.

remotegrouplist Get a list of groups from a host.

remotesysinfo Get the uname information from a host.

remoteusergroups Get a list of a user’s groups on a host.

remoteuserinfo Get a user’s information from a host.

remoteuserlist Get a list of users on a host.

Table 44: Remote access functions

remotefileexists

Syntax

int remotefileexists (string hostname, string filename)

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
374

Description

The remotefileexists function checks whether a filename exists on the remote
system hostname.

Returns true if the file exists; otherwise, it returns false.

The remote host must be configured to run either pmmasterd or pmclientd to respond to
this function.

Example

print(remotefileexists(runhost,"/etc/passwd"))

remotegroupinfo

Syntax

list remotegroupinfo (string hostname, string groupname)

Description

remotegroupinfo returns the group ID and a list of members of the specified group from the
remote host.

The remote host must be configured to run either pmmasterd or pmclientd to respond to
this function.

Example

#print the bin group info from the runhost
print(remoteuserinfo(runhost,"bin"))

Related Topics

remoteuserinfo

remotesysinfo

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
375

remotegrouplist

Syntax

list remotegrouplist (string hostname)

Description

remotegrouplist returns the full list of group names and the associated group IDs located
on the remote host.

The remote host must be configured to run either pmmasterd or pmclientd to respond to
this function.

Example

#print the remote groups on runhost
print(remotegrouplist(runhost))

Related Topics

remoteusergroups

remoteuserlist

remotesysinfo

Syntax

list remotesysinfo (string hostname)

Description

remotesysinfo returns the full uname output from the remote system.

The remote host must be configured to run either pmmasterd or pmclientd to respond to
this function.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
376

Example

#print the runhost's uname info
print(remotesysinfo(runhost))

Related Topics

remoteuserinfo

remotegroupinfo

remoteusergroups

Syntax

list remoteusergroups (string hostname, string username)

Description

remoteusergroups returns a list of groups that the specified user belongs to on the
remote system.

The remote host must be configured to run either pmmasterd or pmclientd to respond to
this function.

Example

print root's groups on the runhost
print(remoteusergroups(runhost,"root"))

Related Topics

remotegrouplist

remoteuserlist

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
377

remoteuserinfo

Syntax

list remoteuserinfo (string hostname, string username)

Description

remoteuserinfo returns user information for the specified user from the remote host.

The remote host must be configured to run either pmmasterd or pmclientd to respond to
this function.

Example

#print root's info on the runhost
print(remoteuserinfo(runhost,"root"))

Related Topics

remotegroupinfo

remotesysinfo

remoteuserlist

Syntax

list remoteuserlist (string hostname)

Description

remoteuserlist returns the full list of user names on the remote host.

The remote host must be configured to run either pmmasterd or pmclientd to respond to
this function.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
378

Example

#print the user list on the runhost
print(remoteuserlist(runhost))

Related Topics

remotegrouplist

remoteusergroups

String functions

These are the built-in string functions available to use within the pmpolicy file.

Name Description

match Match a string to a pattern.

pad Return a new string at a specified character length.

strindex Return the position of a substring in a string.

strlen Return the length of a string.

strsub Return a substring of a string.

sub Return a new string with specified replacements.

subst Substitute part of a string.

substr Return a substring of a string .

Table 45: String functions

match

Syntax

int match(string regularexpr, string str)

Description

match compares a string to a regular expression.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
379

Returns true if a match is found; otherwise, false.

Example

check if user begins with j and ends with t…
if (match("^j.*t$", user)) {

…
}

pad

Syntax

int pad (string sourcestring, string length, string padchar)

Description

pad returns a new string at the exact length of characters long. The beginning of the string
is the sourcestring.

If the length argument is bigger than the size of the sourcestring, then the returned string
is padded with the padchar argument. Otherwise, the first length characters of sourcestring
are returned.

The padchar argument can also contain multiple characters, in which case the characters
return padded repeatedly.

Example

result = pad("123",5," "); {
returns "123"
}
result = pad("123",6,"<>"); {
returns "123<><"
}
result = pad("User Name", 3, " "); {
returns "User"
}

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
380

strindex

Syntax

int strindex(string str, string substr)

Description

strindex returns the numerical offset of a given string within another string. If the substr is
not found, it returns -1.

Example

printf("%d\n",strindex("xxxfooxxx","foo"));

Returns: "3"

printf("%d\n",strindex("xxxfooxxx","bar"));

Returns: "-1"

Related Topics

strlen

strlen

Syntax

int strlen(string str)

Description

strlen returns the length of the string, str.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
381

Example

printf("%d\n",strlen("foo"));

Returns: 3

Related Topics

strindex

strsub

Syntax

string strsub (string str, int start, int length)

Description

strsub returns the substring of a given length starting at a given position in the string.

Example

printf("%s\n",strsub("xxxfooxxx",3,3))

Returns "foo".

printf(%s\n",strsub(xxxfooxxx",3,-1))

-1 returns the remainder of the string, "fooxxx".

sub

Syntax

int sub (string <regexp> string replacement string sourcestring string count)

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
382

Description

sub returns a new string from the sourcestring argument with the specified regular
expression regexp replaced with the string specified in the replacement argument.

Example

result = sub("0x[[:xdigit:]]*:,"hex","These are numbers: 0xA8D, 0x34");

subst

Syntax

string subst (string str, string pattern, string replacement)

Description

subst substitutes part of a string with another string.

Example

print(subst("xxxonexxx","one","two"));

Returns: "xxxtwoxxx"

substr

Syntax

string substr (string str, int start, int length)

Description

substr returns the substring of a given length starting at a given position in the string.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
383

Example

printf("%s\n",substr ("xxxfooxxx",3,3))

Returns "foo".

printf(%s\n",substr (xxxfooxxx",3,-1))

-1 returns the remainder of the string, "fooxxx".

User information functions

These are the built-in user information functions available to use within the pmpolicy file.

Name Description

getfullname Get a user’s full name from the policy server.

getgroup Get a user’s primary group from the policy server.

getgroups Get the list of groups for a user from the policy server.

gethome Get a user’s home directory from the policy server.

getshell Get a user’s login shell from the policy server.

Table 46: User information functions

getfullname

Syntax

string getfullname (string user)

Description

getfullname returns the specified user’s full name from the policy server (or from the client
host if getpasswordfromrun is set to yes in the policy server's pm.settings file). When called
without arguments, the function reports the full name for the user name present inside the
runuser variable.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
384

Example

print the fullname of root on the policy server
print(getfullname("root"));

Related Topics

getgroup

getgroups

gethome

getshell

getgroup

Syntax

string getgroup (string user)

Description

getgroup returns the specified user’s primary group name from the policy server (or from
the client host if getpasswordfromrun is set to yes in the policy server's pm.settings file). If
no user is specified, it returns the submituser’s primary group.

Example

print root user's primary group on the policy server
print(getgroup("root"));

Related Topics

getfullname

getgroups

gethome

getshell

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
385

getgroups

Syntax

list getgroups (string user)

Description

getgroups returns the list of groups to which the specified user belongs from the policy
server (or from the client host if getpasswordfromrun is set to yes in the policy
server's pm.settings file). If you do not specify a user, it returns the submituser's
secondary groups.

The following example returns the list of groups to which root belongs.

Example

print the list of groups to which root belongs
print(getgroups("root"));

Related Topics

getgroup

gethome

getfullname

getshell

gethome

Syntax

string gethome(string user)

Description

gethome returns the specified user’s home directory from the policy server (or from the
client host if getpasswordfromrun is set to yes in the policy server's pm.settings file).

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
386

Example

set working directory to root's home dir on the policy server
runcwd = gethome("root");

Related Topics

getgroup

getgroups

getfullname

getshell

getshell

Syntax

string getshell (string user)

Description

getshell returns the specified user’s login program from the policy server (or from the
client host if getpasswordfromrun is set to yes in the policy server's pm.settings file).

Example

#check the user's shell on the policy server is in /opt/quest/bin
shell=getshell(user);
if (dirname(shell) != "/opt/quest/bin") {

reject "You are only permitted to run a login shell from
/opt/quest/bin";
}

Related Topics

getgroup

getgroups

gethome

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
387

getfullname

Authentication Services functions

These are the built-in Authentication Services functions available to use within the
pmpolicy file.

Name Description

vas_auth_user_
password

Authenticate a user to Active Directory using Authentication
Services.

vas_host_in_
ADgrouplist

Check whether selected host name and domain is a member of any
group in the selected list.

vas_host_is_
member

Check whether selected host name and selected domain is a
member of the selected group.

vas_user_get_
groups

Check membership of the group lists.

vas_user_in_
ADgrouplist

Return membership of the Active Directory group lists.

vas_user_is_
member

Check whether a selected user name and selected domain is a
member of the selected group.

Table 47: Authentication Services functions

vas_auth_user_password

Syntax

int vas_auth_user_password (string user, string pmpt, [, int tries])

Description

The vas_auth_user_password function attempts to authenticate a user to Active Directory
using the Authentication Services API. This feature is platform dependent. The feature_
enabled() function indicates whether this feature is supported on a particular policy server.

Returns 1 if the user successfully authenticates; otherwise it returns 0 (zero).

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
388

Example

if (feature_enabled(FEATURE_VAS)) {
if (!vas_auth_user_password(user, "AD Password:", 3)) {

reject “Failed to authenticate to AD”;
}

}

vas_host_in_ADgrouplist

Syntax

int vas_host_in_ADgrouplist (string hostname, string domain, list ADgrouplist [,
boolean verbose])

Description

The vas_host_in_ADgrouplist function checks if the selected host name and domain is
a member of any group in the selected list. It calls vas_host_is_member for each item
in the list.

Returns: -1 if host is not found in the list, otherwise it returns the index of the matched
list entry.

vas_host_is_member

Syntax

int vas_host_is_member (string hostname, string groupname [, string domain [,
boolean verbose]])

Description

The vas_host_is_member function checks whether a selected host name and selected domain
is a member of the selected group. If domain is empty, it defaults to the joined domain.
You can specify the group name as <domain>/<group> or <group>@<domain>.

Returns:

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
389

l 0: host not in group

l 1: host in group

l -1: error

vas_user_get_groups

Syntax

int vas_user_get_groups (string username, string domainname [, boolean verbose])

Description

The vas_user_get_groups function checks membership of the group lists.

Returns the index of the matched list item if found, or -1 if not found.

vas_user_in_ADgrouplist

Syntax

int vas_user_in_ADgrouplist (string username, string domain, list ADgrouplist [,
boolean verbose])

Description

The vas_host_in_ADgrouplist function checks membership of the Active Directory
group lists.

Returns the index of the matched list item if found, or -1 if not found.

vas_user_is_member

Syntax

int vas_user_is_member (string username, string groupname [, string domain [,
boolean verbose]])

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
390

Description

The vas_user_is_member function checks whether a selected user name and selected domain
is a member of the selected group. If domain is empty, it defaults to the joined domain.
You can specify the group name as <domain>/<group> or <group>@<domain>.

Returns:

l 0: user not in group

l 1: user in group

l -1: error

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix Built-in Functions and Procedures
391

Appendix E

Appendix:Privilege Manager for Unix
programs

This section describes each of the Privilege Manager for Unix programs and their
options. The following table indicates which Privilege Manager for Unix component
installs each program.

Name Description Server Agent Sudo

pmbash Is a wrapper for the GNU Bourne
Again SHell that provides trans-
parent authorization and auditing
for all commands submitted during
the shell session.

X X -

pmcheck Verifies the syntax of a policy file. X - X

pmclientd The Privilege Manager for Unix
Client daemon that listens on the
configured policy server port and
responds to a remote request.

X X -

pmclientinfo Displays configuration information
about a client host.

X X -

pmcp Privilege Manager for Unix remote
file copy command.

X X -

pmcsh Privilege Manager for Unix C Shell
provides transparent authorization
and auditing for all commands
submitted during the shell session.

X X -

pmincludecheck Used by pmsrvconfig script on the
primary server only. When
configuring a primary server in
pmpolicy type, if you do not have a

X - -

Table 48: Privilege Manager programs

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
392

Name Description Server Agent Sudo

policy file to import into the
repository, then pmincludecheck
initializes the policy from the
current set of default policy files
provided in the installation.

pminfo Registers the local host with the
Privilege Manager for Unix 5.5
policy server.

Note that pminfo is obsolete as of
version 5.6 and is included for
backwards compatibility only.

X X -

pmjoin Configures a Privilege Manager for
Unix agent to communicate with
the servers in the group.

X X -

pmkey Generates and installs configurable
certificates.

X X X

pmksh Privilege Manager for Unix K Shell
provides transparent authorization
and auditing for all commands
submitted during the shell session.

X X -

pmless A terminal pager program that
allows you to view (by not modify)
the contents of a text file one
screen at a time.

X X -

pmlicense Displays current license
information and allows you to
update a license (an expired one or
a temporary one before it expires)
or create a new one.

X - -

pmlist Lists the commands that the user is
permitted to run.

X X -

pmloadcheck Controls load balancing and failover
for connections made from the host
to the configured policy servers.

X X -

pmlocald The Privilege Manager for Unix
Local daemon which runs programs
when instructed to do so by the
appropriate policy server daemon.

X X -

pmlog Displays entries in a Privilege X - -

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
393

Name Description Server Agent Sudo

Manager for Unix event log.

pmlogadm Manages encryption options on the
event log.

X - -

pmlogsearch Searches all logs in a policy group
based on specified criteria.

X - -

pmlogsrvd The Privilege Manager for Unix log
access daemon, the service
responsible for committing events
to the Privilege Manager for Unix
event log and managing the
database storage used by the event
log.

X

pmmasterd The Privilege Manager for Unix
Master daemon which examines
each user request and either
accepts or rejects it based upon
information in the Privilege
Manager configuration file. You can
have multiple pmmasterd daemons
on the network to avoid having a
single point of failure.

X - X

pmmg A special version of an emacs text
editor to use with Privilege
Manager for Unix (gnu-style key
bindings).

X X -

pmpasswd Generates an encrypted password
which can be used in the
configuration file.

X - -

pmpolicy A command-line utility for
managing the Privilege Manager for
Unix security policy. This utility
checks out the current version,
checks in an updated version, and
reports on the repository.

X - -

pmpolicyconvert Utility that allows you to verify, and
if necessary, convert any number
of policy files for use with Privilege
Manager for Unix V5.5 (or later).

X - -

pmpolsrvconfig Configures (or unconfigures) a
primary or secondary policy

X - -

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
394

Name Description Server Agent Sudo

server. Allows you to grant a user
access to a repository.

pmremlog Provides a wrapper for the pmlog
and pmreplay utilities to access the
event (audit) and keystroke (I/O)
logs on any server in the policy
group.

X - -

pmreplay Replays an I/O log file allowing you
to review what happened during a
previous privileged session.

X - -

pmresolvehost Verifies the host name or IP
resolution for the local host or a
selected host.

X X X

pmrun Allows a user to run a command
from their local machine as root.
The policy server daemon,
pmmasterd, examines each request
from pmrun, and either accepts or
rejects it based upon the policies
specified in the policy file.

X X -

pmscp Allows Privilege Manager for Unix
to launch the remote scp daemons.

X - -

pmserviced The Privilege Manager for Unix
Service daemon listens on the
configured ports for incoming
connections for the Privilege
Manager for Unix daemons.
pmserviced uses options in
pm.settings to determine the
daemons to run, the ports to use,
and the command line options to
use for each daemon.

X X X

pmsh Privilege Manager for Unix Bourne
Shell that provides transparent
authorization and auditing for all
commands submitted during the
shell session.

X X -

pmshellwrapper A wrapper for any valid login shell
on a host.

X X -

pmsrvcheck Checks the Privilege Manager for X - -

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
395

Name Description Server Agent Sudo

Unix policy server configuration to
ensure it is setup properly.

pmsrvconfig Configures a primary or secondary
policy server.

X - -

pmsrvinfo Verifies the policy server config-
uration.

X - -

pmstatus Verifies connectivity between
Privilege Manager for Unix and the
pmlocald and pmmasterd daemons on
the specified hosts.

X X -

pmsum Generates a simple checksum of a
binary.

X - -

pmsysid Displays the Privilege Manager for
Unix system ID.

X X X

pmtunneld The Privilege Manager for Unix
Tunnel daemon that acts as a proxy
for pmrun when pmlocald
communicates with pmrun through a
firewall.

X X -

pmumacs A special version of a microemacs
text editor to use with Privilege
Manager for Unix (gosling-style key
bindings).

X X -

pmverifyprofilepolicy Verifies the syntax and structure of
the policy file and checks whether a
particular command will be
accepted or rejected.

X - -

pmvi Allows users to access a specific
file as root but no other root
functions.

pmbash

Syntax

pmbash -c <command>|-i|-l|-r|-s|-B|[-+]O <option>

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
396

Description

The Privilege Manager for Unix Bourne Again SHell (pmbash) command is a wrapper
program for the GNU Bourne Again SHell (bash), that provides transparent authorization
and auditing for all commands submitted during the shell session. pmbash supports the
standard options for bash.

Using the appropriate policy file variables, you can configure each command entered
during a shell session, to be:

l forbidden by the shell without further authorization to the policy server

l allowed by the shell without further authorization to the policy server

l presented to the policy server for authorization

Once allowed by the shell, or authorized by the policy server, all commands run locally as
the user running the shell program.

Unlike the other Privilege Manager for Unix shells, pmbash is not a standalone shell. It is a
wrapper that runs the system version of the bash shell while logging keystrokes and
authorizing shell commands via Privilege Manager for Unix. Command authorization is
limited to external commands: pmbash, cannot authorize shell built-in commands.

Options

pmbash has the following options.

Option Description

-B Allows the shell to run in the background.

-c <command> Runs the specified command from the next argument.

-i Runs the shell in interactive mode even when input is not
from a terminal.

-l Acts as a login shell, the shell will read the contents of
/etc/profile and $HOME/.profile if they exist.

[+-]O <shopt_option> Sets or clears one of the shell options accepted by the
shopt built-in command.

-r Runs the shell in restricted mode.

The shell reads commands
from standard input even
when there are additional non-
option arguments.

Table 49: Options: pmsh

Additional long options may also be specified, see the bash manual for details.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
397

pmcheck

Syntax

pmcheck [-z on|off[:<pid>]] | [-v] |
[[-a <string>] [-b] [-c] [-e <requestuser>]
[-f <filename>] [-g <group>] [-h <hostname>] [-i]
[-l <shellprogram>] [-m <YY[YY]/MM/DD>] [-n <HH[:MM]>]
[-o sudo|pmpolicy] [-p <policydir>] [-q] [-r <remotehost>]
[-s <submithost>] [-t] [-u <runuser>] [command [args]]]

Description

Use the pmcheck command to test the policy file. Although the policy server daemon
pmmasterd reports configuration file errors to a log file, always use pmcheck to verify the
syntax of a policy file before you install it on a live system. You can also use the
pmcheck command to simulate running a command to test whether a request will be
accepted or rejected.

The pmcheck program exits with a value corresponding to the number of syntax
errors found.

Options

pmcheck has the following options.

Option Description

-a <string> Checks if the specified string, entered during the session, matches any
alertkeysequence configured. You can only specify this option if you
supply a command.

This option is only relevant when using the pmpolicy type.

-b Run in batch mode. By default, pmcheck runs in interactive mode, and
attempts to emulate the behavior of the pmmasterd when parsing the
policy file. The -b option ensures that no user interaction is required if
the policy file contains a password or input function; instead, a success-
ful return code is assumed for any password authentication functions.

-c Runs in batch mode and displays output in csv format. By default
pmcheck runs in interactive mode. The -c option ensures that no user
interaction is required if the policy file contains a password prompt or
input function and no commands that require remote connections are
attempted.

-e Sets the value of requestuser. This option allows you to specify the

Table 50: Options: pmcheck

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
398

Option Description

<requestuser> group name to use when testing the configuration. This emulates
running a session using the pmrun –u <user> option to request that
Privilege Manager for Unix runs the command as a particular runuser.

-f <filename> Sets path to policy filename. Provides an alternative configuration
filename to check. If not fully qualified, this path is interpreted as
relative to the policydir, rather than to the current directory.

-g <group> Sets the group name to use. If not specified, then pmcheck looks up the
user on the master policy server host to get the group information.
This option is useful for checking a user and group that does not exist
on the policy server.

-h <hostname> Specifies execution host used for testing purposes.

-i Ignores check for root ownership of policy.

-l
<shellprogram>

Verifies the command as though it was run from within a Privilege
Manager for Unix shell program. This special case of pmcheck verifies
the specified shell program first, and if accepted, it verifies the
specified command as a normal executable program within this shell to
determine whether it would be forbidden, accepted, or rejected.

This option is only relevant when using the pmpolicy type.

-m <YY
[YY]/MM/DD>

Checks the policy for a particular date. Enter Date in this format: YY
[YY]/MM/DD. Defaults to the current date.

-n <HH[:MM]> Checks the policy for a particular time. Enter Time in this format: HH
[:mm]. Defaults to the current time.

-o <policytype> Interprets the policy with the specified policy type:

l sudo

l pmpolicy

-p policydir Forces pmcheck to use a different directory to search for policy files
included with a relative pathname. The default location to search for
policy files is the policydir setting in pm.settings.

-q Runs in quietmode, pmcheck does not prompt the user for input, print
any errors or prompts, or run any system commands. The exit status
of pmcheck indicates the number of syntax errors found (0 = success).
This is useful when running scripted applications that require a simple
syntax check.

-r remotehost Sets the value of the clienthost variable within the configuration file,
useful for testing purposes.

If you log in by means of pmksh or pmshellwrapper, the clienthost
variable is set to the name of the remote host you used to log in.
Otherwise the clienthost variable is set to the value of the submithost

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
399

Option Description

variable.

-s submithost Sets the value of the submithost variable within the configuration file,
useful for testing purposes.

-t Runs in quietmode to check whether a command would be accepted or
rejected. By default, pmcheck runs in interactive mode. The –t option
ensures that no user interaction is required if the policy file contains a
password prompt or input function, no output is displayed and no
commands that require remote connections are attempted.

Exit Status:

l 0: Command accepted

l 11: Password prompt encountered. The command will only be
accepted if authentication is successful

l 12: Command rejected

l 13: Syntax error encountered

-u <runuser> Sets the value of the runuser variable within the configuration file,
useful for testing purposes.

-v Displays the version number of Privilege Manager for Unix and exits.

-z Enables or disables debug tracing, and optionally sends SIGHUP to
running process.

Refer to Enabling program-level tracing on page 179 before using this
option.

Sets the
command name
and optional
arguments.

You can use pmcheck two ways: to check the syntax of the configuration file, or to test
whether a request is accepted or rejected (that is, to simulate running a command).

By default, pmcheck runs the configuration file interactively in the same way as pmmasterd
and reports any syntax errors found. If you supply an argument to a command, it reports
whether the requested command is accepted or rejected. You can use the –c and –q options
to verify the syntax in batch or silent mode, without any user interaction required.

When you run a configuration file using pmcheck, you are allowed to modify the values of
the incoming variables. This is useful for testing the configuration file's response to various
conditions. When pmmasterd runs a configuration file, the incoming variables are read-only.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
400

Example

To verify whether the pmpolicy file /opt/quest/qpm4u/policies/test.conf allows user
jsmith in the users group to run the passwd root command on host, host1, enter:

pmcheck -f /opt/quest/qpm4u/policies/test.conf –o pmpolicy –u jsmith –g users
-h host1 passwd root

Related Topics

pmkey

pmlocald

pmmasterd

pmpasswd

pmreplay

pmrun

pmsum

pmclientd

Syntax

pmclientd [-v]i|[-z on|off[:<pid>]]

Description

The pmclientd daemon runs on an agent and allows the agent to respond to remote
requests sent by a policy server as a result of calling a remote function from the policy file.
It is not required on a policy server, as the pmmasterd daemon can serve these requests, if
received from another policy server. pmclientd listens on the configured policy server port
and responds to a remote request received from any valid policy server or any host listed
in the clients setting in pm.settings.

Options

pmclientd has the following options.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
401

Option Description

-v Displays the version number of Privilege Manager for Unix and exits.

-z Enables or disables debug tracing, and optionally sends SIGHUP to
running process.

Refer to Enabling program-level tracing on page 179 before using this
option.

Table 51: Options: pmclientd

pmclientinfo

Syntax

pmclientinfo -v | [-z on|off[:<pid>]]] | -c [-h <host>]

Description

The pmclientinfo utility displays configuration information about a client host. This utility
provides some information about the policy server group and the license features
supported by the policy server group. You can specify a host on the command line to
retrieve the details from a specific policy server host. Otherwise, the utility checks each
policy server listed in the pm.settings file in turn until it finds one in a policy server group.
Any user can run pmclientinfo.

Options

pmclientinfo has the following options.

Option Description

-c Displays CSV, rather than human-readable output.

-h <host> Specifies policy server host name to interrogate for policy group inform-
ation.

-v Displays the version number of Privilege Manager for Unix and exits.

-z Enables or disables debug tracing.

Refer to Enabling program-level tracing on page 179 before using this
option.

Table 52: Options: pmclientinfo

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
402

Examples

Any user on the host can run this utility. It displays the following information, in
human readable or CSV format:

- Joined to a policy group : YES
- Policy group name configured for this policy server group : adminGroup1
- Primary policy server hostname : adminhost1

Human Readable output from a client:

- Joined to a policy group : YES
- Name of policy group : adminGroup1
- Hostname of primary policy server : adminhost1.example.com

CSV output from a client:

PMCLIENTINFO.JOINED,Joined to a policy group,YES
PMCLIENTINFO.POLICYGROUPNAME,Name of policy group,adminGroup1
PMCLIENTINFO.PRIMARYPOLICYSERVER,Hostname of primary policy
server,adminhost1.example.com

Files

l Settings file: /etc/opt/quest/qpm4u/pm.settings

Related Topics

pmjoin

pmcp

Syntax

pmcp [-v]|[-z on|off[:<pid>]] [-m <masterhost>] file1 rhost:file2

Description

Use pmcp to copy a file from one host to another. The pmcp command allows you to select
the policy server host to contact, bypassing the usual selection methods. The specified host
must be present in the masters setting in the pm.settings file. This functionality is the same
as using pmrun [-m masterhost].

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
403

You can use the following policy variables with pmcp:

Variable Description

filesize Specifies the size of the source file.

filename Specifies the name of the source file,
including the full path.

filedest Specifies the name of the target file, including
the full path.

fileuser Specifies the user name associated with the
source file UID.

filegroup Specifies the group name associated with the
source file GID.

Specifies the date that the source file
was last modified. This returns a string in
the form: YYYY/MM/DD.

Table 53: Policy variables: pmcp

Options

pmcp has the following options.

Option Description

-m
<masterhost>

Selects a policy server host to contact.

-v Displays product version information.

-z Enables or disables debug tracing, and optionally sends SIGHUP to
running process.

Refer to Enabling program-level tracing on page 179 before using this
option.

Table 54: Options: pmcp

pmcsh

Syntax

pmcsh

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
404

Description

The Privilege Manager for Unix C Shell (pmcsh) command starts a C shell, an interactive
command interpreter and a command programming language that uses syntax similar to
the C programming language. The C shell carries out commands either interactively from a
terminal keyboard or from a file. pmcsh is a fully featured version of csh, that provides
transparent authorization and auditing for all commands submitted during the shell
session. All standard options for csh are supported by pmcsh.

To see details of the options and the shell built-in commands supported by pmcsh,
run pmcsh -?

Using the appropriate policy file variables, you can configure each command entered
during a shell session, to be:

l forbidden by the shell without further authorization to the policy server

l allowed by the shell without further authorization to the policy server

l presented to the policy server for authorization

Once allowed by the shell, or authorized by the policy server, all commands run locally as
the user running the shell program.

Options

pmcsh has the following options.

Option Description

-b <file> Runs in batch mode. Reads and runs commands from specified file.

-B Allows the shell to run in the background.

-c <command> Runs specified command from next argument.

-d Loads directory stack from ~/.cshdirs.

-Dname
[=value]

Defines environment variable name as specified value (DomainOS
only).

-e Exits on any error.

-f Starts faster by ignoring the start-up file.

-F Uses fork() instead of vfork() when spawning (ConvexOS only).

-i Runs in interactive mode, even when input is not from a terminal.

-l Acts as a login shell, must be the only option specified.

-m Loads the start-up file, whether or not owned by effective user.

-n <file> Runs in no execute mode, just checks syntax of the specified file.

Table 55: Options: pmcsh

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
405

Option Description

-q Accepts SIGQUIT for running under a debugger.

-s Reads commands from standard input.

-t Reads one line from standard input.

-v Echos commands after history substitution.

-V Like -v but including commands read from the start up file.

-x Echos commands immediately before execution.

-X Like -x but including commands read from the start up file.

--help | ? Prints this message and exits.

--version Prints the version shell variable and exits.

pmcsh supports the following built-in functions:

:, @, alias, alloc, bg, bindkey, break, breaksw, builtins, case, cd, chdir, complete,
continue, default, dirs, echo, echotc, else, end, endif, endsw, eval, exec, exit, fg,
filetest, foreach, glob, goto, hashstat, history, hup, if, jobs, kill, limit, log,
login, logout, ls-F, nice, nohup, notify, onintr, popd, printenv, pushd, rehash,
repeat, sched, set, setenv, settc, setty, shift, source, stop, suspend, switch,
telltc, termname, time, umask, unalias, uncomplete, unhash, unlimit, unset, unsetenv,
wait, where, which, while

pmincludecheck

Syntax

pmincludecheck [-v][-p <path>][-f][-o]

Description

pmincludecheck is used by the pmsrvconfig script on the primary server only. When
configuring a primary server in pmpolicy mode, if you do not have a policy file to import
into the repository, then pmincludecheck initializes the policy from the current set of default
policy files provided in the installation.

Options

pmincludecheck has the following options.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
406

Option Description

-v Displays the version number of Privilege Manager for Unix and exits.

-p <path> Sets policyDir to the specified path.

-f Sets policyDir to the specified file.

-o Forces rewrite of the current policy file, which archives and replaces the
current policy file.

Table 56: Options: pmincludecheck

pminfo

Note that pminfo is obsolete in version 5.6 or higher and is included for backwards
compatibility only.

Syntax

pminfo -v | [-s | -d | -r [-m <master>]]

Description

The pminfo program allows the local host to register with Privilege Manager for Unix. If
your Privilege Manager for Unix policy server has a host license, this registration is
mandatory; agents cannot communicate successfully with the policy server until
registration is completed and the policy server has allocated a license slot for the agent.

During registration, information about the local host configuration is sent to the Privilege
Manager for Unix policy server. This includes a list of the agent's IP addresses.

To view the information that will be sent to the Privilege Manager for Unix policy server,
run pminfo with the -s option.

The pminfo program located on an agent identifies itself to the policy server using the
agent's fully qualified host name and a unique registration data string.

If the host name or IP addresses of the agent are changed, then the agent must re-register
with the policy server.

Options

pminfo has the following options.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
407

Option Description

-d Unregisters the local host from Privilege Manager for Unix.

-m <master> Specifies a single policy server host to register with. By default, pminfo
attempts to register with all policy servers configured in
etc/opt/quest/pm.settings.

-r Registers the local host with Privilege Manager for Unix.

-s Dumps the local host registration information to stdout.

-v Displays the version number of Privilege Manager for Unix and exits.

Table 57: Options: pminfo

Files

l Privilege Manager for Unix configuration file: /etc/opt/quest/qpm4u/policy/pm.conf

l Privilege Manager for Unix communication parameters:
/etc/opt/quest/qpm4u/pm.settings

Related Topics

pmlicense

pmmasterd

pmjoin

Syntax

pmjoin –h | --help [-abitv] [-d <variable>=<value>] [<policy_server_host>]
[-bv] -u --unjoin
[--accept] [--batch] [--define <variable>=<value>] [--interactive]
[--selinux] [--tunnel] [--verbose] <policy_server_host>

Description

Use the pmjoin command to join a PM Agent to the specified policy server. When you join a
policy server to a policy group, it enables that host to validate security privileges against a
single common policy file located on the primary policy server, instead of on the host. You
must run this configuration script after installing the PM Agent package to allow this agent
to communicate with the servers in the group.

Options

pmjoin has the following options.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
408

Option Description

-a | --accept Accepts the End User License Agreement (EULA),
/opt/quest/qpm4u/pqm4u_eula.txt.

-b | --batch Runs in batch mode, will not use colors or require user input
under any circumstances.

-d <variable>-
>=<value> | --
define <variable>-
>=<value>

Specifies a variable for the pm.settings file and its associated
value.

-h | --help Prints this help message.

-i | --interactive Runs in interactive mode, prompting for configuration parameters
instead of using the default values.

-S | --selinux Enable support for SELinux in Privilege Manager for Unix.

A SELinux policy module will be installed, which allows the
pmlocal daemon to set the security context to that of the run user
when executing commands. This requires that the policycoreutils
package and either the selinux-policy-devel (RHEL7 and above)
or selinux-policy (RHEL6 and below) packages be installed.

-t | --tunnel Configures host to allow Privilege Manager for Unix connections
through a firewall.

-u | --unjoin Unconfigures a Privilege Manager for Unix agent.

-v | --verbose Displays verbose output while configuring the host.

Table 58: Options: pmjoin

Examples

See Joining PM Agent to a Privilege Manager for Unix policy server for usage examples.

Files

l Directory when pmjoin logs are stored: /opt/quest/qpm4u/install

Related Topics

pmrun

pmlocald

pmmasterd

pmpolicy

pmsrvconfig

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
409

pmkey

Syntax

pmkey -v | [-z on|off[:<pid>]]
-a <keyfile>
[[-l | -r | -i <keyfile>]
[-p <passphrase>] [-f]]

Description

Use the pmkey command to generate and install configurable certificates.

In order for a policy evaluation request to run, keys must be installed on all hosts involved
in the request. The keyfile must be owned by root and have permissions set so only root
can read or write the keyfile.

Options

pmkey has the following options.

Option Description

-a <keyfile> Creates an authentication certificate.

-i <keyfile> Installs an authentication certificate.

-l Creates and installs a local authentication certificate to this file:

/etc/opt/quest/qpm4u/.qpm4u/.keyfiles/key_localhost

This is equivalent to running the following two commands:

l pmkey -a /etc/opt/quest/qpm4u/.qpm4u/.keyfiles/ key_localhost

-OR-

l pmkey -i /etc/opt/quest/qpm4u/.qpm4u/.keyfiles/ key_localhost

-f Forces the operation. For example:

l Ignore the password check when installing keyfile using -i or -r

l Overwrite existing keyfile when installing local keyfile using –l

-p
<passphrase>

Passes the passphrase on the command line for the -a or -l option.

If not specified, pmkey prompts the user for a passphrase.

-r Installs all remote keys that have been copied to this directory:

/etc/opt/quest/qpm4u/.qpm4u/.keyfiles/key_<hostname>

Table 59: Options: pmkey

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
410

Option Description

This provides a quick way to install multiple remote keys.

-v Displays the Privilege Manager for Unix version and exits.

-z Enables or disables debug tracing.

Refer to Enabling program-level tracing on page 179 before using this
option.

Examples

The following command generates a new certificate, and puts it into the
specified file:

pmkey -a <filename>

The following command installs the newly generated certificate from the
specified file:

pmkey -i <filename>

Related Topics

pmcheck

pmlocald

pmmasterd

pmpasswd

pmreplay

pmrun

pmsum

pmksh

Syntax

pmksh

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
411

Description

The Privilege Manager for Unix K Shell (pmksh) starts a Korn shell, an interactive command
interpreter and a command programming language. The Korn shell carries out commands
either interactively from a terminal keyboard or from a file. pmksh is a fully featured
version of ksh, that provides transparent authorization and auditing for all commands
submitted during the shell session. All standard options for ksh are supported by pmksh.

To see details of the options and the shell built-in commands supported by pmksh,
run pmksh -?.

Note that pmksh supports the -B option which allows the entire shell to run in the
background when used in conjunction with '&. For example, pmksh –B –c
backgroundshellscript.sh & will run the specified shell script in the background
using pmksh.

Using the appropriate policy file variables, you can configure each command entered
during a shell session, to be:

l forbidden by the shell without further authorization to the policy server

l allowed by the shell without further authorization to the policy server

l presented to the policy server for authorization

Once allowed by the shell, or authorized by the policy server, all commands run locally as
the user running the shell program.

pmless

Syntax

pmless /<full_path_name>

Description

The pmless pager is similar to the less pager. It has been modified so that you can use it
securely with the Privilege Manager for Unix programs. Because of this, you must specify a
full pathname as a command line argument to pmless. Also, you will not be able to access
any files other than the ones you specify at startup time. Nor will you be allowed to spawn
any processes.

Using this program in conjunction with Privilege Manager for Unix allows you to access a
specific file as root but not other root functions.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
412

pmlicense

Syntax

pmlicense -h
[-c]
-v [-c]
-v <xmlfile> [-c]
-l|-x <xmlfile> [-c] [-f] [-e]
-u [s|f][-c][-d m|y][-o <outfile>][-s d|h][-t u|p|k]
-r [e]
-z on |off[:<pid>]

Description

The pmlicense command allows you to display current license information, update a license
(an expired one or a temporary one before it expires) or create a new one. If you do not
supply an option, then pmlicense displays a summary of the combined licenses configured
on this host.

Options

pmlicense has the following options.

Option Description

-c Displays output in CSV, rather than human-readable format.

–d Filters a license report; restricting the date to either:

l m: Only report licenses used in the past month.

l y: Only report licenses used in the past year.

-e Does not forward the license change to the other servers in the group.

-f Does not prompt for confirmation in interactive mode.

-h Displays usage.

-l <xmlfile> Configures the selected XML license file, and forwards it to the other
servers in the policy group.

This option must be run as the root user or a member of the pmpolicy
group.

-o <outfile> Sends report output to selected file rather than to the default. For csv
output, the default is file: /tmp/pmlicense_report_<uid>.txt; for human-

Table 60: Options: pmlicense

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
413

Option Description

readable output, the default is stdout.

-r Regenerates and configures the default trial license, removing any
configured commercial licenses, and forwards this change to the other
servers in the policy group.

-s Sort the report data by either:

l d: date (newest first)

l h: hostname (lowest first)

-t Filters license report by client type:

l u: Privilege Manager for Unix client

l p: sudo policy plugin

l k: sudo keystroke plugin

-u Displays the current license utilization on the master policy server:

l s: Show summary of hosts licensed

l f: Show full details of hosts licensed, with last used times

-v If you do not provide a file argument, it displays the details of the
currently configured license. If you provide a file argument, it verifies
the selected XML license file and displays the license details.

-x <xmlfile> Configures the selected XML license file.

This option is deprecated, use the "-l" option instead.

-z Enables or disables debug tracing.

Refer to Enabling program-level tracing on page 179 before using this
option.

License data is updated periodically by the pmloadcheck daemon. See pmloadcheck on page
417 for details.

Examples

To display current license status information, enter the following:

pmlicense

Privilege Manager for Unix displays the current license information, noting the status
of the license. The output will be similar to the following:

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
414

*** One Identity Privilege Manager for Unix ***
*** Privilege Manager for Unix VERSION 6.n.n (nnn) ***
*** CHECKING LICENSE ON HOSTNAME:<host>, IP address: <IP>
*** SUMMARY OF ALL LICENSES CURRENTLY INSTALLED ***
*License Type PERMANENT
*Commercial/Freeware License COMMERCIAL
*Expiration Date NEVER
*Max QPM4U Client Licenses 1000
*Max Sudo Policy Plugin Licenses 0
*Max Sudo Keystroke Plugin Licenses 0
*Authorization Policy Type permitted ALL
*Total QPM4U Client Licenses In Use 2
*Total Sudo Policy Plugins Licenses in Use 0
*Total Sudo Keystroke Plugins Licenses in Use 0

*** LICENSE DETAILS FOR PRODUCT:QPM4U
*License Version 1.0
*Licensed to company Testing
*Licensed Product QPM4U(1)
*License Type PERMANENT
*Commercial/Freeware License COMMERCIAL
*License Status VALID
*License Key PSXG-GPRH-PIGF-QDYV
*License tied to IP Address NO
*License Creation Date Tue Feb 08 2012
*Expiration Date NEVER
*Number of Hosts 1000

To update or create a new a license, enter the following at the command line:

pmlicense -l <xmldoc>

Privilege Manager for Unix displays the current license information, noting the
status of the license, and then validates the information in the selected .xml file,
for example:

*** One Identity Privilege Manager for Unix ***
*** Privilege Manager for Unix VERSION 7.n.n (nnn) ***
*** CHECKING LICENSE ON HOSTNAME:<host>, IP address:<IP> ***
*** SUMMARY OF ALL LICENSES CURRENTLY INSTALLED ***
*License Type PERMANENT
*Commercial/Freeware License COMMERCIAL
*Expiration Date NEVER
*Max QPM4U Client Licenses 1000
*Max Sudo Policy Plugin Licenses 0

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
415

*Max Sudo Keystroke Plugin Licenses 0
*Authorization Policy Type permitted ALL
*Total QPM4U Client Licenses In Use 2
*Total Sudo Policy Plugins Licenses in Use 0
*Total Sudo Keystroke Plugins Licenses in Use 0
*** Validating license file: <xmldoc> ***
*** LICENSE DETAILS FOR PRODUCT:QPM4U
*License Version 1.0
*Licensed to company Testing
*Licensed Product QPM4U(1)
*License Type PERMANENT
*Commercial/Freeware License COMMERCIAL
*License Status VALID
*License Key PNFT-FDIO-YSLX-JBBH
*License tied to IP Address NO
*License Creation Date Tue Feb 08 2012
*Expiration Date NEVER
*Number of Hosts 100
*** The selected license file (<xmldoc>) contains a valid license ***

Would you like to install the new license? y
Type y to update the current license.
Archiving current license… [OK]
*** Successfully installed new license ***

Related Topics

pmmasterd

Installing licenses

Displaying license usage

pmlist

Syntax

pmlist

Description

The pmlist command displays a list of commands the current user is permitted to run. It is
only valid when using the profile-based policy.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
416

If the server is configured to use the default profile policy, use the pmlist command to list
the commands that you are permitted to run. The server evaluates all configured profiles in
the policy; for those that match the submit user and host, it prints out the commands that
are permitted by the profile.

pmloadcheck

Syntax

pmloadcheck -v
-z on | off[:<pid>]
-s|-p|-i [-e <interval>][-t <sec>]
[-c|-f][-b][-h <master>][-t <sec>] [-a][-r]

Description

The pmloadcheck daemon runs on each host. The pmloadcheck daemon runs on Privilege
Manager for Unix policy servers. By default, every 60 minutes the daemon verifies the
status of the configured policy servers. It controls load balancing and failover for
connections made from the host to the configured policy servers, and on secondary
servers, it sends license data to the primary server.

When the pmloadcheck daemon runs, it attempts to establish a connection with the policy
servers to determine their current status. If pmloadcheck successfully establishes a session
with a policy server, it is marked as online and is made available for normal client
sessions. If pmloadcheck does not successfully establish a session with a policy server, it is
marked as offline.

Information is gathered from a policy server each time a normal client session connects to
the policy server. This information is used to determine which policy server to use the next
time a session is requested. If an agent cannot establish a connection to a policy server
because, for example, the policy server is offline, then this policy server is marked as
offline and no more connections are submitted to this policy server until it is marked
available again.

To check the current status of all configured policy servers, and display a brief summary of
their status, run pmloadcheck with no options. Add the –f option to show full details of each
policy server status.

Options

pmloadcheck has the following options.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
417

Option Description

-a Verifies the connection as if certificates were configured.

-b Runs in batch mode.

-c Displays output in CSV format.

-e <interval> Sets the refresh interval (in minutes) to determine how
often the pmloadcheck daemon checks the policy server
status. Default = 60.

-f Shows full details of the policy server status when
verifying and displaying policy server status.

-h <master> Selects a policy server to verify.

-i Starts up the pmloadcheck daemon, or prompt an
immediate recheck of the policy server status if it is
already running.

-P Sends SIGNUP to a running daemon.

-p Pauses (sends SIGUSR1) to a running daemon.

-r Reports last cached data for selected servers instead of
connecting to each one.

-s Stops the pmloadcheck daemon if it is running.

-t <sec> Specifies a timeout (in seconds) to use for each connec-
tion.

-v Displays the version string and exits.

-z Enables or disables debug tracing.

Refer to Enabling program-level tracing on page 179
before using this option.

Table 61: Options: pmloadcheck

pmlocald

Syntax

pmlocald - v | [-s] [-e <filename>] [-m <polserverspec>] | -z on|off [:<pid>]

Description

The Privilege Manager for Unix local daemon (pmlocald) runs programs when instructed to
do so by the appropriate policy server daemon. pmlocald is started from pmserviced.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
418

Unless the -m option is used, it first checks the /etc/opt/quest/qpm4u/pm.settings file to
determine the policy server daemons from which it is allowed to accept requests. If the
request is legitimate, it then runs and manages the program.

Options

pmlocald has the following options.

Option Description

-e <filename> Sends any errors to the specified file; applies only to local daemon
errors.

-m
<polserverspec>

Specifies the policy server daemon from which requests are accepted.
polserverspec is either a host name, or a netgroup name preceded by
a + or a - (+ includes the netgroup, - excludes it). You can specify
polserverspecmore than once.

If you use the -m option, it does not consult masterhost setting in the
/etc/opt/quest/qpm4u/pm.settings file.

-s Sends any errors generated to syslog.

-v Displays the version number of Privilege Manager for Unix and exits.

-z Enables or disables tracing for this program and optionally for a
currently running process.

Refer to Enabling program-level tracing on page 179 before using this
option.

Table 62: Options: pmlocald

Files

File containing Privilege Manager for Unix communication parameters, including the list of
valid master hosts:

/etc/opt/quest/qpm4u/pm.settings

Related Topics

pmcheck

pmkey

pmmasterd

pmpasswd

pmreplay

pmrun

pmsum

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
419

pmlog

Syntax

pmlog [-dlvq] [-p|a|e|r|x <printexpr>] [-f <filename>] [[-c] <constraint>]
[[-c] <constraint>] [-f <filename>] -h [-z on|off[:<pid>]]
[--user <username>]
[--runuser <username>] [--runhost <hostname>] [--reqhost <hostname>]
[--masterhost <hostname>][--command <pattern>] [--reqcommand <pattern>]
[--runcommand <pattern>][--before "<YYYY/MM/DD hh:mm:ss>"]
[--after "<YYYY/MM/DD hh:mm:ss>"][--result Accept|Reject]

Description

Use the pmlog command to selectively choose and display entries in a Privilege Manager for
Unix event log. Each time a job is accepted, rejected, or completed by pmmasterd, an entry
is appended to the file specified by the eventlog variable in the configuration file. eventlog
is sent to /var/opt/quest/qpm4u/pmevents.db on all platforms.

Options

pmlog has the following options.

Option Description

-a <expression> Sets the print expression for accept events to the specified expres-
sion.

-c <constraint> Selects particular entries to print; specify constraint as a Boolean
expression.

See Examples.

-d Dumps each entry as it is read without matching 'accept' and 'end'
entries. The -d (dump) option forces pmlog to print each entry as it
is read from the file. The default output format includes a unique
identifier at the start of each record, allowing 'end' events to be
matched with 'accept' events.

-e <expression> Sets the print expression for finish events to the specified expres-
sion.

-f <filename> Reads the event log information from the specified file.

-h Displays usage information.

-l Dumps alert log entries only.

Table 63: Options: pmlog

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
420

Option Description

-p <expression> Sets the print expression for all event types to the specified expres-
sion.

-q Runs in quiet mode; no expression errors (for example, undefined
variables) are printed.

-r <expression> Sets the print expression for reject events to the specified expres-
sion.

-v Turns on verbose mode.

-x <expression> Sets the print expression for alert events to the specified expres-
sion.

-z Enables or disables debug tracing.

Refer to Enabling program-level tracing on page 179 before using
this option.

Quick Search Options

--user
<username>

Selects entries in which the requesting user matches username.

--runuser
<username>

Selects entries in which runusermatches username.

--runhost
<hostname>

Selects entries in which runhostmatches hostname.

--reqhost
<hostname>

Selects entries in which the requesting host matches hostname.

--masterhost
<hostname>

Selects entries in which masterhostmatches hostname.

--command
<pattern>

Selects entries in which the requested command matches pattern.

--reqcommand
<pattern>

Return events where the given text appears anywhere in the
requested command line.

--runcommand
<pattern>

Selects entries in which the runcommand host matches pattern.

--before
"<YYYY/MM/DD
hh:mm:ss>"

Selects entries occurring before the specified date and time.

--after
"<YYYY/MM/DD
hh:mm:ss>"

Selects entries occurring after the specified date and time.

--result
Accept|Reject

Selects entries that were accepted or rejected.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
421

Examples

Without arguments, pmlog reads the default eventlog file and prints all its entries. If
you have chosen a different location for the event log, use the -f option to specify
the file for pmlog.

By default, pmlog displays one entry for each completed session (either rejected or
accepted). You can filter the results to print only entries which satisfy the specified
constraint using the -c option. In these examples the -c option is used to specify a
constraint as a Boolean expression:

pmlog -c'event=="Reject"'

pmlog -c'date > "2008/02/11"'

pmlog -c'user=="dan"'

which prints only rejected entries, entries that occur after February 11, 2008, or
requests by user Dan, respectively.

See Privilege Manager for Unix Variables on page 190 for more information about
policy variables.

The following options accept shortcut notations to specify constraints:

l --user username

l --runuser username

l --reqhost hostname

l --runhost hostname

l --masterhost hostname

l --command command

l --runcommand command

l --reqcommand command

l --before "YYYY/MM/DD hh:mm:ss"

l --after "YYYY/MM/DD hh:mm:ss"

l --result Accept|Reject

For example, here are equivalent constraints to the previous example specified
using shortcuts:

pmlog --result Reject

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
422

pmlog --after "2008/02/11 00:00:00"

pmlog --user dan

With shortcuts, you can express user names and host names as patterns containing
wild card characters (? and *). For example, to display entries for all requests for
user1, user2, and user3, use the following shortcut:

pmlog --user “user?"

Enclose patterns containing wild card characters in quotes to avoid being interpreted
by the command shell.

Use the -d and -v options for debugging. Normally, when pmlog finds an 'accept'
entry, it refrains from printing until the matching 'end' entry is found; all requested
information including exitstatus, exitdate, and exittime is then available to print.

The -d (dump) option forces pmlog to print each entry as it is read from the file. The
default output format includes a unique identifier at the start of each record, allowing
'end' events to be matched with 'accept' events.

The -v (verbose) option prints all the variables stored with each entry.

The -t option turns on tail follow mode. The program enters an endless loop,
sleeping and printing new event records as they are appended to the end of the log
file. The -d flag is implied when using -t.

You can specify the output format for each of the three event types - 'accept', 'reject'
or 'finish' - with the -a, -r, and -e options. Use the -p option to set the output for all
three event types.

For example, to print only the dates and names of people making requests, enter:

pmlog -p'date + "\t" + user + "\t" + event'

-OR-

pmlog -p 'sprintf("%s %-8s %s", date, user, event)'

See Listing event logs on page 161 for more examples of using the pmlog command.

Note that if you run pmlog --csv console to obtain CSV output from pmlog, refer to
pmlogsearch on page 427 for a list of the column headings.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
423

pmlogadm

Syntax

pmlogadmin> archive <event_log_path> <archive_path> --before <YYYY-MM-DD>
[--clean-source] [--dest-dir <destination_path>] [--no-zip]

pmlogadmin> archive <event_log_path> <archive_path> --older-than <days>
[--clean-source] [--dest-dir <destination_path>] [--no-zip]

pmlogadmin> backup <event_log_path> <backup_path>
pmlogadmin> create <new_event_log_path>
pmlogadmin> encrypt enable|disable|rekey <event_log_path>
pmlogadmin> help [<command>]
pmlogadmin> import [-y|-n] <source_event_log> <dest_event_log>
pmlogadmin> info <event_log_path>
pmlogadmin> --help|-h
pmlogadmin> --version|-v
pmlogadmin> -z on|off[:<pid>]

Description

Privilege Manager event log administration utility. Use pmlogadm to manage encryption
options on the event log.

Options

pmlogadm has the following options.

Option Description

-h, --help Displays usage information.

help [<command>]

By default the help command displays the general usage output. When
you specify a command, it displays a usage summary for that
command.

-v, --version Displays the version number of Privilege Manager for Unix and exits.

-z Enables or disables debug tracing, and optionally sends SIGHUP to
running process.

Refer to Enabling program-level tracing on page 179 before using this
option.

Table 64: Options: pmlogadm

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
424

Option Description

--verbose Enables verbose output.

--silent Disables all output to stdout. Errors are output to stderr.

Table 65: Global options: pmlogadm

Option Description

archive Moves old events to an archive.

archive <event_log_path> <archive_name> --before <YYYY-MM-DD> [--
cleansource] [--dest-dir <destination_path>] [--no-zip]

-OR-

archive <event_log_path> <archive_name> --older-than <days> [--
cleansource] [--dest-dir <destination_path>] [--no-zip]

Moves events that occurred before the indicated date (YYYY-MM-DD) to
an archive-named archive_name. If you use the second form, specify
the date as days before the current date.

The archive is created in the current working directory unless you
specify a destination path using the --dest-dir option. By default, the
archive is compressed using tar and gzip, but you can skip this using
the --no-zip option, in which case the resulting archive is a directory
containing the new log with the archived events.

All files in that directory are required to access the archive. To access
the archive, use pmlog. Moving events to an archive may not reduce the
actual file size of the event log. To reduce the file size, the source log
must be cleaned. To clean the source log, add the --clean-source
option. When a large number of events are present in the source log
this option can increase the archive process time and use a large
amount of disk space while the process runs. Once started, do not
interrupt the process.

backup Creates a backup of the source log (event_log_path), in location backup_
log.

create Creates new empty audit files for that log.

create <new_event_log_path>

This may include a keyfile which has the -kf suffix, a journal file with
the -wal suffix, and a -shm system file. It is critical that the group of
files that make up an event log remain together at all times. Removal
of any one of these files may result in permanent loss of access to the
event log.

encrypt Enables or disables encryption of an event log.

encrypt enable|disable|rekey <event_log_path>

Table 66: Valid commands: pmlogadm

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
425

Option Description

By default all event logs created by Privilege Manager for Unix are
encrypted using the AES-256 standard. The encryption key is stored in
the keyfile which is in the same path as the event log and has the same
file name, and the -kf suffix. It is critical that this file remain in the
same path as the main event log file. You can decrypt the whole log file
using the encrypt disable command, passing the path of the main event
log file as an argument. Enable encryption using encrypt enable. The
encrypt rekey command generates a new encryption key and re-
encrypt all data in the event log using that new key data. The key file is
automatically updated with the new key data if the operation succeeds.

import Imports events.

import [-y|-n] <source_event_log> <dest_event_log>

Import events from source_event_log, adding them to dest_event_log.

info Displays information about the event log.

info <event_log_path>

Displays information about the event_log_path. The information
reported includes the current encryption status of the event log, the
size of the file and the number of events contained in the log.

Settings

The following entries in the /etc/opt/quest/qpm4u/pm.settings file are used by pmlogadm

Option Description

Specify the location of the event log queue, used by both pmmasterd
and pmlogsrvd. This option is only used to determine whether the
pmlogsrvd service is currently running.

Table 67: Settings: pmlogadm

For more usage information for a specific command, run:

pmlogadm help <command>

Files

The default Privilege Manager event log file is located at:

/var/opt/quest/qpm4u/pmevents.db

Other files that may be used by pmlogadm are:

l settings file: /etc/opt/quest/qpm4u/pm.settings

l pid file: /var/opt/quest/qpm4u/evcache/pmlogsrvd.pid

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
426

Related Topics

pmlog

pmlogsrvd

pmmasterd

pmlogsearch

Syntax

pmlogsearch [--csv] [--no-sort]
[--before "<YYYY/MM/DD hh:mm:ss>"] [--after "<YYYY/MM/DD hh:mm:ss>"]
[--user <username>] [--host <hostname>] [--result accept|reject]
[--text <keyword>]
-h | --help
-v | --version

Description

Use the pmlogsearch command to perform a search on all logs in this policy group based on
specified criteria.

You must specify at least one search condition; you can combine conditions.

Options

pmlogsearch has the following options.

Option Description

--csv Outputs the search results in CSV format, suitable for consumption by
Privilege Manager for Unix. If this option is not present, the output is
human-readable.

One or more of the search criteria must be present, and any
combination of the criteria is accepted. When multiple criteria are
present they must all be matched (that is, the query criteria are
combined using AND logic) for a log to be included in the results.

--after

--before

Returns logs generated for sessions initiated after or before the
specified time and date. For example:

pmlogsearch --after “2012/01/04 00:00:00”

returns all logs for sessions since January 4, 2012.

Table 68: Options: pmlogsearch

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
427

Option Description

pmlogsearch --after “2012/01/01 00:00:00” --before “2012/12/31
23:59”

returns all logs generated during 2012.

--user
<username>

Searches for logs generated by sessions requested by the specified user
name. username is case sensitive. For example:

pmlogsearch --user harry

returns the locations of all keystrokelogs for sessions requested by the
user named "harry".

The pattern may include the following wild card symbols:

l * = match any string

l ? = match any single character

--host
<hostname>

Searches for logs generated by sessions that ran on hosts matching the
given pattern. The pattern may include the following wild card symbols:

l * = match any string

l ? = match any single character

For example:

pmlogsearch --host “myhost?.mydomain.com”

matches logs for sessions that ran on myhost1.mydomain.com or
myhost2.mydomain.com, but not myhost1 or myhost10.mydomain.com.

pmlogsearch --host “myhost*”

matches logs for sessions that ran on myhost1.mydomain.com,
myhost2.mydomain.com, myhost1 or myhost10.mydomain.com, but will not
match anotherhost.mydomain.com.

pmlogsearch --host myhost11.mydomain.com

only matches logs for sessions that ran on host myhost11.mydomain.com.

--result Returns only events with the indicated result.

--text
“<keyword>”

Searches for events where the specified text occurs in the command
line or events with keystroke logs that contain the specified text.

You must enter the keyword or phrase as one argument. If the phrase
contains a space, enclose the whole phrase in quotes. For example:

pmlogsearch --text “my phrase”

matches any log containing the string "my phrase".

pmlogsearch --text phone

matches logs containing any word with the substring phone (such as,
telephone, headphones, phones), or the complete word phone.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
428

Option Description

--no-sort Does not sort the results.

–v | --version Displays the version number of Privilege Manager for Unix and exits.

-h | --help Displays usage information and exits.

Output

You can output the search results in either human-readable or CSV format.

Human-Readable Output

The following is an example of the human-readable output of a search:

pmlogsearch --user sheldon --text Linux
Search matches 5 events
2012/01/19 18:12:25 : Accept : sheldon@host1.example.com

Request: sheldon@host1.example.com : uname -a
Executed: root@host1.example.com : uname -a

IO Log: pmsrv1.example.com: opt/quest/qpm4u/iologs/sheldon/root/uname-
20120119-181225.OiaiBr
2012/01/19 18:11:56 : Accept : sheldon@host1.example.com

Request: sheldon@host1.example.com : uname -a
Executed: root@host1.example.com : uname -a

IO Log: pmsrv2.example.com: opt/quest/qpm4u/iologs/sheldon/root/uname-
20120119-181156.x46qJP
2012/01/19 17:59:09 : Accept : sheldon@host2.example.com

Request: sheldon@host2.example.com : uname -a
Executed: root@host2.example.com : uname -a

IO Log: pmsrv2.example.com: opt/quest/qpm4u/iologs/sheldon/root/uname-
20120119-175909.1H0P5n
2012/01/19 17:58:42 : Accept : sheldon@host2.example.com

Request: sheldon@host2.example.com : uname -a
Executed: root@host2.example.com : uname -a

IO Log: pmsrv2.example.com: opt/quest/qpm4u/iologs/sheldon/root/uname-
20120119-175842.ZvfrMv
2012/01/19 17:58:14 : Accept : sheldon@host2.example.com

Request: sheldon@host2.example.com : uname -a
Executed: root@host2.example.com : uname -a

IO Log: pmsrv1.example.com: opt/quest/qpm4u/iologs/sheldon/root/uname-
20120119-175814.

CVS output

The results are output in CSV format, without field headings. The columns are listed in
order below:

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
429

1. Session date/time

2. Session Unique ID

3. Master host

4. Submit host (host from which the session was requested)

5. Submit user (the user that requested the session)

6. Requested host

7. Requested user account

8. Requested command line

9. Result (Accept/Reject)

10. Run host (the host on which the command was run)

11. Run user (the user account used to run the command)

12. Command line that ran

13. The exit return code if the command ran successfully, or "NO_EXIT" if the event was
rejected or the command failed to run

14. Keystroke log host. This column is blank, if it is the same as #3 Master host.

15. Keystroke log file path

The following is an example of CSV output:

pmlogsearch --csv --user penny --text "Linux"
"2012/01/19 18:10:40", "4d3729207eec", "pmsrv1.example.com", "host1.example.com",
"penny", "uname", "Accept", "host1.example.com", "penny", "uname",
"pmsrv1.example.com", "opt/quest/qpm4u/iologs/host1.example.com/penny/uname-
20120119-181040.hLqZFY"
"2012/01/19 18:10:13", "4d3729057e5f", "pmsrv1.example.com", "host1.example.com",
"penny", "uname", "Accept", "host1.example.com", "penny", "uname",
"pmsrv1.example.com", "opt/quest/qpm4u/iologs/host1.example.com/penny/uname-
20120119-181013.yG1m41"
"2012/01/19 18:00:14", "4d3726ae1ec0", "pmsrv2.example.com", "host1.example.com",
"penny", "uname", "Accept", "host1.example.com", "penny", "uname",
"pmsrv2.example.com", "opt/quest/qpm4u/iologs/host1.example.com/penny/uname-
20120119-180015.Z42heZ"
"2012/01/19 18:00:47", "4d3726cf1f9d", "pmsrv1.example.com", "host1.example.com",
"penny", "uname", "Accept", "host1.example.com", "penny", "uname",
"pmsrv1.example.com", "opt/quest/qpm4u/iologs/host1.example.com/penny/uname-
20120119-180047.GUtrRt"

Related Topics

Viewing the log files using command line tools

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
430

pmlogsrvd

Syntax

pmlogsrvd [-d | --debug] [-h | --help] [--log-level <level>] [--no-detach]
[--once] [-q | --queue <queue_path>] [--syslog [facility]]
[-t | --timeout <delay_seconds>] [-v | --version] [-z on|off [:<pid>]]

Description

pmlogsrvd is the Privilege Manager for Unix log access daemon, the service responsible for
committing events to the Privilege Manager for Unix event log, and managing the database
storage used by the event log.

When an incoming event is processed by pmmasterd that event must be logged to the event
log. pmmasterd commits a record of the log to the event log queue, which is monitored by
pmlogsrvd. pmlogsrvd takes each event from the queue and commits that event to the
actual event log.

Options

pmlogsrvd has the following options.

Option Description

-d | --debug Enables debug operation. This option prevents pmlogsrvd from running in
the background, and enables debug output to both the log and the
terminal.

-h | --help Displays the usage information and exits.

--log-level
<level>

Controls the level of log messages included in the log file. By default the
logging level logs only error messages. Valid logging levels, in
ascending order by volume of messages, are:

l none

l error

l warning

l info

l debug

--no-detach Do not run in the background or create a pid file. By default, pmlogsrvd
forks and runs as a background daemon. When you specify the --no-
detach option, it stays in the foreground.

Table 69: Options: pmlogsrvd

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
431

Option Description

--once Processes the queue once immediately and then exits.

-q | --queue
<path>

Specifies the location of the event log queue as path.

--syslog Enables logging to syslog.

-t | --timeout
<delay_
seconds>

Specifies the time delay between processing the queue as time seconds.
By default pmlogsrvd waits for 120 seconds before waking to scan the
event log queue if no other trigger causes it to begin processing.
Normally processing is triggered directly by pmmasterd immediately
after an event is processed.

-v | --version Displays the version number of Privilege Manager for Unix and exits.

-z Enables or disables debug tracing.

Refer to Enabling program-level tracing on page 179 before using this
option.

Settings

pmlogsrvd uses the following entries in the /etc/opt/quest/qpm4u/pm.settings file.

Setting Description

eventLogQueue <pathname> Specifies the location of the event log queue, used by
both pmmasterd and pmlogsrvd. This setting is ignored by
pmlogsrvd when you use the --queue option on the
command line.

pmlogsrvlog <pathname> Fully qualified path to the pmlogsrvd log file.

By default, /pmlogsrvd/fR used
this setting to determine
whether to send log messages
to syslog. When you use the
/syslog/fR option on the
command line, this setting is
ignored.

Table 70: Settings: pmlogsrvd

Files

l settings file: /etc/opt/quest/qpm4u/pm.settings

l pid file: /var/opt/quest/qpm4u/evcache/pmlogsrvd.pid

Related Topics

pmlog

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
432

pmlogsearch

pmmasterd

pmmasterd

Syntax

pmmasterd [-z on|off[:<pid>]] [-v]| [[-ars] [-e <logfile>]]

Description

The Privilege Manager for Unix master daemon (pmmasterd) is the policy server decision-
maker. pmmasterd receives requests from pmrun or the Sudo Plugin and evaluates them
according to the security policy. If the request is accepted, pmmasterd asks pmlocald or the
Sudo Plugin to run the request in a controlled account such as root.

A connection is maintained between pmmasterd and the Sudo Plugin for the duration of the
session. This also occurs between pmmasterd and pmlocald, if keystroke logging is enabled.
When the pmmasterd connection is maintained throughout the session, keystroke and event
log data is forwarded on this connection.

If keystroke logging is not enabled, pmlocald reconnects to pmmasterd at the end of the
session to write the event log record showing the final completion code for the command
run by pmlocald. If pmlocald is unable to reconnect, it writes instead to a holding file,
pm.eventhold.hostname. It then attempts to write the pmevents.db record to the host the next
time pmmasterd connects to pmlocald. Multiple files can accrue and they will all be delivered
to the proper host when the connection is restored.

The policy server master daemon typically resides on a secure machine. You can have
more than one policy server master daemon on different hosts for redundancy or to serve
multiple networks.

pmmasterd logs all errors in a log file if you specify the -e filename option.

Options

pmmasterd has the following options.

Option Description

-a Sends job acceptance messages to syslog.

-e <filename> Logs any policy server master daemon errors in the file specified.

-r Sends job rejection messages to syslog.

Table 71: Options: pmmasterd

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
433

Option Description

-s Sends any policy server master daemon errors to syslog.

-v Displays the version number of pmmasterd and exits.

-z Enables or disables tracing for this program and optionally for a
currently running process.

Refer to Enabling program-level tracing on page 179 before using this
option.

Files

l Privilege Manager for Unix policy file (pmpolicy type):
/etc/opt/quest/qpm4u/policy/pm.conf

Related Topics

pmcheck

pmkey

pmlocald

pmpasswd

pmreplay

pmrun

pmsum

pmmg

Syntax

pmmg /<full_path_name>

Description

The pmmg text editor is a special version of the mg text editor that you can use securely with
Privilege Manager for Unix programs; it is a small version of gnu emacs with gnu-style emacs
key bindings. You must specify a full pathname as an argument when starting pmmg. Also,
you will not be able to access any files other than the ones you specified at startup time.
Nor will you be allowed to spawn any processes.

When you the pmmg program with Privilege Manager for Unix, it allows you to access a
specific file as root, but not other root functions.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
434

pmpasswd

Syntax

pmpasswd

Description

The pmpasswd program generates an encrypted password which can be used in a custom
configuration script. When you type pmpasswd, it asks you to type the password twice, then
prints out the encrypted version. You can use the encrypted version as the first argument
to the getstringpasswd function in the configuration file.

Related Topics

getstringpasswd

pmpolicy

Syntax

pmpolicy -v | -z on|off[:<pid>] command [args] [-c] [<command>.] -h

Description

pmpolicy is a command line utility for managing the Privilege Manager for Unix security
policy. Use the pmpolicy command to view and edit the policy in use by the group. Any user
in the pmpolicy group may run this command on any configured policy server host.

This utility checks out the current version, checks in an updated version, and reports on the
repository.

You can use the –c option to display the result of the command in CSV, rather than in a
human-readable form. The CVS output displays the following fields: Resultcode, name,
description, Output msg.

The pmpolicy utility exits with the following possible exit status codes, unless otherwise
stated below:

Exit status codes

l 0: Success

l 1: Repository does not exist

l 2: Specified path does not exist

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
435

l 3: Failed to checkout from the repository

l 4: Failed to check in to the repository

l 5: Syntax error found in new policy – check in was abandoned

l 6: Conflict found when attempting a check in – check in was abandoned

l 7: Policy type not found in repository

l 8: Failed to access the repository to report requested information

l 9: The selected version was not found in the repository

l 10: Directory did not contain a working copy

l 11: Check in abandoned

l 12: Invalid path specified

l 13: Invalid configuration

Options

The following is a summary of the commands and options available to pmpolicy.

Run any command with a -h to get more information about it. For example:

pmpolicy <command> -h

Command Description

add Adds a new file from the specified path to the policy repository.

add -p path -d dir [-n [-l commitmsg]] [-c] [-u <user>]

Records the addition of a new file to the working copy of the policy. Use
the -p option to specify the file path (relative to the top-level directory
in the policy) to add. Use the -d option to specify the directory of the
working copy. The -n option commits the changes to the repository. If
you use the -n option, you can also use the -l option to provide a
commit log message. If you use -n without the -l, the command
interactively prompts you for the commit log message

checkout Checks out a working copy of the policy to the specified directory.

checkout -d <dir> [-c] [-r <revision>]

If the directory does not exist, it is created. If the selected directory
exists, the existing contents is overwritten. By default, the latest copy
is retrieved; use the –r option to check out a particular revision. You
can specify a revision using SVN DATE format, or the HEAD keyword,
as well as revision numbers.

Table 72: Commands and options: pmpolicy

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
436

Command Description

A date format specified without a time, defaults to 00:00:00.

The earliest time you can use to identify a particular revision is one
second after the time you commit the revision. For example, if you
committed revision 2 at 12:00:00, then you must specify a time of
12:00:01 or later to check out revision 2. For example:

pmpolicy checkout -d /tmp -r "{2012-01-02 12:00:01}" # checkout
revision that existed on 2012-01-02 00:00:00

commit Checks in changes from a working copy to the policy repository.

commit -d <dir> [-l <commitmsg>] [-c] [-a force|-
abort|merge|overwrite][-u <user>]

Commits the working copy of the policy from the indicated directory.
All files in the indicated directory are checked in to the repository.

This working copy is first verified for syntax errors using the pmcheck
utility. The working copy must match the policy type currently in use,
otherwise a syntax error will be produced by pmcheck.

If no syntax errors are encountered, it attempts to check in this copy
into the repository, honoring the -a option as described below. Exit
status of 0 indicates successful check in.

The –a option indicates the action to be taken when checking in a
working copy, if the repository has changed since the working copy was
checked out, that is, the edits are based on an out-of-date copy of the
repository. The resulting differences between the working copy and the
repository may or may not conflict.

You can specify the following actions:

l Merge: If the only differences are non-conflicting, then merge
the changes. If any conflicting changes are found, abort the check
in.

l Overwrite: Merge the changes. If any conflicting changes are
found in the repository, select those from the working copy.

l Force: Overwrite the copy in the repository with the working
copy, discarding any changes that have been committed since the
working copy was checked out.

l Abort: Abandon the check in if the working copy is out of date,
regardless of whether changes are in conflict (this is the default)

For example:

pmpolicy commit -d /tmp -a force

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
437

Command Description

diff Checks the differences between two revisions of the policy and reports
the output to stdout, or to the selected output file.

diff [-o <outfile>][-c][-f][-p <path>][-d <dir> [-r <v1>]] | [-r
[<v1>:[<v2>]]

By default, this option displays the differences between the two
selected revisions. If you specify the –f option, it displays the
incremental differences between each revision in the specified range.
You can specify revisions using any acceptable SVN revision format,
such as HEAD, COMMITTED, or DATE format. You can use the –o option
to report the "diff" output to a file, rather than to stdout (the default).

l If you specify a directory, it compares the copy in that directory
with the selected revision (or the latest revision in the repository,
if you do not specify a revision).

l If you specify one revision, it reports the difference between the
latest and selected revision.

l If you specify two revisions, it reports the difference between the
selected revisions.

Exit status codes:

l 0: no differences were detected.

l 1: differences were detected

l 2: An error occurred

For example:

pmpolicy diff -d /tmp -o /tmp/diffs.txt -r2 pmpolicy diff –r1:2 -
o /tmp/diffs.txt

edit The utility checks out a temporary working copy of the policy and starts
the appropriate interactive editor to edit the files.

edit [-a force|abort|merge|overwrite] [-l <commitmsg>] [-p
<path>][-u <user>]

This option is useful for manual interactive editing of the policy on the
command line.

On completion of the edit, it verifies the syntax of the policy. If no
errors are found, it checks the edits back in to the repository. If any
errors are found, then it exits without checking in the changes.

When saving an edited policy, some non-ASCII characters in the
commit log message may error and cause all changes to the policy to
be discarded. To avoid this possibility, avoid using backspace, arrow

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
438

Command Description

keys and any other keys that may be interpreted as non-ASCII
characters within the shell.

help Displays usage information.

log Logs revision information about the repository.

log [-o <outfile>][-c][-e][-r <revision>]

Reports information about the repository to stdout or to the selected
output file. This displays details of the user who changed the
repository, the version number for this change, along with the time and
date of the change.

By default, this option shows details of each revision in the repository,
one version per line. If you specify a version, it shows the details of
this version. You can use the –o option to report the "log" output to a
file, rather than to stdout.

The status is displayed in the following format for CSV output:

"<version>","<username>",<YYYY-MM-DD>,<HH:MM:SS>"<commitmsg>"

For example:

pmpolicy log -r 3

masterstatus Reports the status of the production copy of the policy used by Privilege
Manager for Unix to authorize commands.

masterstatus [-o <outfile>] [-c]

The production copy is stored in the following directory by default:

/etc/opt/quest/qpm4u/policy/

You can use the –o option to report the information to a file instead of to
stdout.

It reports the following information:

l Path to the production copy

l Date and time the production copy was checked out

l Revision number of the production copy

l Latest trunk revision number of the repository

l Locally modified flag (indicates that someone manually edited the
file)

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
439

Command Description

The information is displayed in the following format for CSV output:

<path>,<YYYY/MM/DD>,<HH:MM><policyrevision>,<trunkrevision>,0|1

remove Removes a file from the specified path in the policy repository.

remove -p path -d dir [-n [-l <commitmsg>]] [-c] [-u <user>]

Removes a file from the indicated working copy directory. Use the -p
option to specify a path to the file (relative to the top-level directory in
the policy). Use the -d option to specify the directory of the working
copy. The -n option commits the changes to the repository. If you use
the -n option, you can also use the -l option to provide a commit log
message. If you use -n without -l, the command interactively prompts
you for the commit log message.

revert Reverts to the selected revision of the policy.

revert [-c] [-r <version>][-l <commitmsg>]

Checks out a copy of the selected revision, edits the files, and checks
the copy back in as the latest revision.

status Verifies the working copy of the policy in the directory indicated.

status -d <dir> [-c]

Verifies the working copy of the policy in the specified directory. You
can use this to verify the status of a working copy that was previously
checked out, before attempting to commit any edits. Each file in the
selected directory is checked against the latest version in the
repository. For example:

pmpolicy status -d /tmp

Exit status codes:

l 0: The working copy is up to date and has not been modified; no
action is required.

l 1: The working copy is up to date and has been modified; you
must check in to commit the edits made in the working copy.

To commit the changes, run:

pmpolicy commit -d <dir>

l 2: The working copy is out of date and has not been modified;
You must check out to get an up-to-date copy of the policy before

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
440

Command Description

editing.

To check out the latest copy, run:

pmpolicy checkout -d <dir>

l 3: The working copy is out of date and has been modified, but the
changes do not conflict with the latest version. Therefore, a
default check in will fail. To commit the you must use the -a
option.

To commit the changes, run:

pmpolicy commit -d <dir> -a merge

l 4: The working copy is out of date and has been modified and the
changes conflict with the latest version, therefore a default check
in will fail.

To commit the changes and overwrite any conflicts with the
working copy’s changes run:

pmpolicy commit -d <dir> -a force

l 5: An error occurred when attempting to verify the status.

sync Checks out the latest version to the production copy of the policy used
by Privilege Manager for Unix to authorize commands.

sync [-f][-c]

Synchronize the local production copy of the policy with the latest
revision in the repository.

-v Displays the Privilege Manager for Unix version.

-z Enables or disables debug tracing and optionally sends SIGHUP to a
running process.

Refer to Enabling program-level tracing on page 179 before using this
option.

Related Topics

pmcheck

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
441

pmpolicyconvert

Syntax

pmpolicyconvert [-o <output dir>] [-v [-v]] path [paths...]

Description

The pmpolicyconvert utility allows you to verify, and if necessary, convert any number of
policy files for use with Privilege Manager for Unix V5.5 (or later).

The pmpolicyconvert utility is a perl script that takes as input one or more policy files, and
makes a copy of each file, performing any translation required to allow these files to be
used in Privilege Manager for Unix.

pmpolicyconvert also warns about any variables and functions that are not applicable in
Privilege Manager for Unix.

You can pass one or more files or directories as parameters to this utility. If a directory is
specified, then pmpolicyconvert assumes it is to translate all files contained in that
directory (and all subdirectories).

It copies the updated files to the specified output directory (mirroring the original directory
structure if an entire directory is being translated). All changes are marked with a
comment in the copied file.

A report is generated in the file ./ pmpolicyconvert _report.txt that describes the
changes made.

Options

pmpolicyconvert has the following options.

Option Description

-h Displays a usage message and exit.

-o <output dir> Specifies an output directory to use. If not specified, the default is ./pm_
policy.

-v Runs in verbose mode. Multiple –v options increase the verbosity. The
maximum is two.

-V Displays the version number of Privilege Manager for Unix and exits.

Table 73: Options: pmpolicyconvert

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
442

pmpolsrvconfig

Syntax

pmpolsrvconfig -p <policygroupname> [-b][-i <path>][-o][-r <dir>]
[-t sudo|pmpolicy] [-u <policyuser][-w <userpasswd>]
[-g <policygroup>][-l <loggroup>] -s <host> [-b][-q] [-q]
-a <user> [-b][-q] [-q]
-d [-f]
-e <host> [-f]
-x [-f]
-v
-h
-[-z on|off[:<pid>]]

Description

The pmpolsrvconfig program is normally run by pmsrvconfig script, not by the user, to
configure or un-configure a primary or secondary policy server. But, you can use it to grant
a user access to a repository.

Options

pmpolsrvconfig has the following options.

Option Description

-a <user> Provides the selected user with access to the existing repository. If the
user does not exist, it is created. The host must first have been
configured as a policy server.

This user will be added to the pmpolicy group to grant it read/write
access to the repository files, and to the pmlog group to grant it read
access to the log files.

On a secondary policy server, an ssh key will also be generated to
provide access to the pmpolicy user account on the primary policy
server. The "join" password is required to copy this ssh key to the
primary policy server.

-b Runs the script in batch mode (that is, no user interaction is possible).

Default: Runs in interactive mode.

-d Unconfigures the policy server, and deletes the repository if this is a
primary server.

Table 74: Options: pmpolsrvconfig

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
443

Option Description

If you do not specify the -f option, then it prompts you to confirm the
action.

-e <host> Removes the selected host from the server group.

-f Forces the unconfigure action (that is, no user interaction required)

Default: Prompt for confirmation for -x option.

-g
<policygroup>

Specifies the policy group ownership for the repository. If this group
does not exist, it is created.

Default: pmpolicy

-h Prints help.

-i <path> Imports the selected policy into the repository. If this is a directory, the
entire contents of the directory will be imported.

Default: /etc/sudoers.

-l <loggroup> Specifies the pmlog group ownership for the keystroke and audit logs

Default: pmlog

-o Overwrites the repository if it already exists.

Default: Does not overwrite if the repository already exists.

-p
<policygroup>

Configures a primary policy server for the selected group name.

-q Reads the pmpolicy user's password from stdin.

-r <dir> Creates the repository in the selected directory.

Default: /var/opt/quest/qpm4u/.qpm4u/.repository

-s <host> Configures a secondary policy server. You must supply the primary
policy server host name. The secondary policy server retrieves the
details of the policy group from the primary policy server. It creates
the policygroup and loggroup groups to match those on the primary
policy server and configures the policyuser user to grant it ssh access
to the repository on the primary server. The "join" password is required
to copy this ssh key to the primary policy server.

-t sudo|p-
mpolicy

Specifies the security policy type: sudo or pmpolicy.

Default: sudo policy type

-u <policy-
user>

Specifies the policy user account that manages the production copy. If
this user does not exist, it is created and added to both the policygroup
and loggroup groups. This user owns the repository on the primary
policy server and provides remote access to the repository files to the
secondary policy servers.

Default: pmpolicy

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
444

Option Description

-v Prints the product version.

-w
<userpasswd>

(Optional) Sets new user's password for -a option.

Default: No password is configured.

-x Unconfigures the policy server. If you do not specify the -f option, you
are prompted to confirm the action.

This does not remove the repository.

-z Enables or disables debug tracing, and optionally send SIGHUP to a
running process.

Refer to Enabling program-level tracing on page 179 before using this
option.

pmremlog

Syntax

pmremlog -v | -z on|off[:<pid>]
pmremlog -p pmlog|pmreplay|pmlogtxtsearch [-o <outfile>]
pmremlog [-h <host>] [-b] [-c] -- <program args>

Description

The pmremlog command provides a wrapper for the pmlog and pmreplay utilities to access the
event (audit) and keystroke (I/O) logs on any server in the policy group. Anyone in the
pmlog group can run this utility on the primary policy server.

Note that pmlogtxtsearch is a command located in /opt/quest/libexec.

Options

pmremlog has the following options.

Option Description

-b Disables interactive input and uses batch mode.

-c Displays output in CSV, rather than human-readable format.

-h <host> Specifies a host in the policy server group to access.

-o <outfile> Saves the pmlog output to a file.

Table 75: Options: pmremlog

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
445

Option Description

-p Specifies program to run:

l pmlog

l pmreplay

l pmlogtxtsearch

-v Displays the Privilege Manager for Unix version number.

-z Enables or disables debug tracing.

Refer to Enabling program-level tracing on page 179 before using this
option.

Examples

To view the audit log on the primary policy server, enter:

pmremlog –p pmlog -- -f /var/opt/quest/qpm4u/pmevents.db

To view the audit events for user fred on secondary policy server host1, save the
pmlog output to a file, and display the result of the pmremlog command in CSV
format, enter:

pmremlog –p pmlog -c –o /tmp/events.txt -h host1 -- --user fred

To view the stdout from keystroke log id_host1_x3jfuy, on secondary policy server
host1, enter:

pmremlog –p pmreplay –h host1 -- -o -f /var/opt/quest/qpm4u/iologs/id_
host1_x3jfuy

To retrieve the contents of keystroke log id_host1_x3jfuy, from secondary policy
server host1, formatted for the pmreplay GUI, save the output to a temporary file,
and display the result of the pmremlog command in CSV format, enter:

pmremlog –p pmreplay –h host1 -c –o /tmp/replay -- -zz -f
/var/opt/quest/qpm4u/iologs/id_host1_x3jfuy

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
446

pmreplay

Syntax

pmreplay -V
pmreplay -[t|s|i] -[Th] <filename>
pmreplay -[e][I][o] -[EhKTv] <filename>
pmreplay -z on|off[:<pid>]

Description

Use the pmreplay command to replay a log file to review what happened during a specified
privileged session. The program can also display the log file in real time.

When using Privilege Manager for Unix, enable keystroke logging by configuring the iolog
variable. If you are using the default profile policy, please consult global_variable.conf for
details about configuring keystroke logging.

pmreplay can distinguish between old and new log files. If pmreplay detects that a log file
has been changed, a message displays to tell you that the integrity of the file cannot be
confirmed. This also occurs if you run pmreplay in real time and the Privilege Manager for
Unix session that generated the events in the log file is active; that is, the client session
has not completed or closed yet. In this case, the message does not necessarily indicate
that the file has been tampered with.

The name of the I/O log is a unique filename constructed with the mktemp function using a
combination of policy file variables, such as username, command, date, and time.

Privilege Manager for Unix sets the permissions on the I/O log file so that only root and
users in the pmlog group can read it. That way, ordinary users cannot examine the
contents of the log files. You must be logged in as root or be a member of the pmlog group
to use pmreplay on these files. You may want to allow users to use Privilege Manager for
Unix to run pmreplay.

By default pmreplay runs in interactive mode. Enter ? to display a list of the interactive
commands you can use to navigate through the file.

For example, replay a log file interactively by typing:

pmreplay /var/opt/quest/qpm4u/iolog/demo/dan/id_20130221_0855_gJfeP4

the results will show a header similar to this:

Log File : /var/opt/quest/qpm4u/iolog/demo/dan/id_20130221_0855_gJfeP4 Date :
2013/02/21 Time : 08:55:17 Client : dan@sala.abc.local Agent : root@sala.abc.local
Command : id Type ’?’ or ’h’ for help

Type ? or h at any time while running in interactive mode to display the list of commands
that are available.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
447

Options

pmreplay has the following options.

Option Description

-e Dumps the recorded standard error.

-E Includes vi editing sessions when used with -K.

-h When used with -o or -I, prints an optional header line. The header is
always printed in interactive mode.

-i Replays the recorded standard input.

-I Dumps the recorded standard input, but converts carriage returns to
new lines in order to improve readability.

-K When used with -e, -I, and -o, removes all control characters and
excludes vi editing sessions. Use with -E to include vi editing sessions.

-o Dumps the recorded standard output.

-s Automatically replays the file in slide show mode.

Use + and - keys to vary the speed of play.

-t Replays the file in tail mode, displaying new activity as it occurs.

-T Displays command timestamps.

-v Prints unprintable characters in octal form (\###)

-V Displays the Privilege Manager for Unix version number.

-z Enables or disables debug tracing.

Refer to Enabling program-level tracing on page 179 before using this
option.

Table 76: Options: pmreplay

Exit codes

pmreplay returns these codes:

l 1: File format error – Cannot parse the logfile.

l 2: File access error – Cannot open the logfile for reading

l 4: Usage error – Incorrect parameters were passed on the command line

l 8: Digest error – The contents of the file and the digest in the header do not match

Navigating the log file

Use the following commands to navigate the log file in interactive mode.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
448

Command Description

g Go to start of file.

G Go to end of file.

p Pause or resume replay in slide show mode.

q Quit the replay.

r Redraw the log file from start.

s Skip to next time marker. Allows you to see what happened each
second.

t Display time of an action at any point in the log file.

u Undo your last action.

v Display all environment variables in use at the time the log file was
created.

Space key Go to next position (usually a single character); that is, step forward
through the log file.

Enter key Go to next line.

Backspace key Back up to last position; that is, step backwards through the log file.

/<Regular
Expression>
Enter

Search for a regular expression while in interactive mode.

Repeat last
search.

Table 77: Log file navigation shortcuts

Display the time of an action at any point in the log file with t, redraw the log file with r,
and undo your last action with u.

You can also display all the environment variables which were in use at the time the log file
was created using v. Use q or Q to quit pmreplay.

Type any key to continue replaying the I/O log.

pmresolvehost

Syntax

pmresolvehost -p|-v|[-h <hostname>] [-q][-s yes|no]

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
449

Description

The pmresolvehost command verifies the host name / IP resolution for the local host or for
a selected host. If you do not supply arguments, pmresolvehost checks the local host
name/IP resolution.

Options

pmresolvehost has the following options.

Option Description

-h <hostname> Verifies the selected host name.

-p Prints the fully qualified local host name.

-q Runs in silent mode; displays no errors.

-s Specifies whether to allow short names.

-v Displays the Privilege Manager for Unix version.

Table 78: Options: pmresolvehost

pmrun

Syntax

pmrun -v | -z on|off[<pid>] [-b][-d][-n][-p] [-m <masterhost>] [-h <hostname>]
[-u <requestuser>] command [args]

Description

The pmrun command requests that an application is run in a controlled account. Simply add
pmrun to the beginning of the command line. For example:

pmrun backup /usr dev/dat

pmrun checks the /etc/opt/quest/pm.settings file to determine which the policy server
daemon to send the request. Once it has contacted a policy server daemon, it sends a
request to the daemon to run the application specified. As with the ssh command, you can
type ~^Z to suspend pmrun, or ~. to terminate it. You must enter these commands at the
beginning of a new line.

Options

pmrun has the following options.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
450

Option Description

-b Allows the runcommand process to run in the background, permitting you
to run other programs or commands from the same window. You can
use the -b switch with any application process which does not require
output that changes the ttymode. Because of this restriction, you can
not use the -b switch with applications that require a password.

-d The -d option is required if the application you are running uses the
nohup command. Include the -d parameter to ensure that the nohup
command functions correctly.

-h
<hostname>

Allows you to request a particular execution host to run the request.
Enter -h <host> before the command you are requesting.

-m
<masterhost>

Allows you to select the policy server host to contact, bypassing the
usual selection methods. The specified host must be in the masters
setting in the pm.settings file.

-n Redirects the input of pmrun to /dev/null. Use the -n option to avoid
unfortunate interactions between pmrun and the shell which invokes it.
For example, if you are running pmrun and start a pmrun in the
background without redirecting its input away from the terminal, it will
block even if no reads are posted by the remote command.

-p Puts pmrun into pipe mode, in which all interactions with the user's
terminal are done without changing any of the terminal parameters.
Normally, pmrun puts the terminal into raw mode, so that programs such
as text editors, which require raw mode, can run properly under pmrun.
Pipe mode is useful when you need to pipe several pmrun commands
together. For example:

pmrun -p ls /etc/secure | pmrun -p dbadd listing

-u
<requestuser>

Requests to run the command as the specified user. The policy server
decides whether to honor this request.

-v Displays the Privilege Manager for Unix version number and exits.

-z Enables or disables tracing for this program and optionally for a
currently running process.

Refer to Enabling program-level tracing on page 179 before using this
option.

Table 79: Options: pmrun

Files

File containing Privilege Manager for Unix communication parameters, including the list of
valid master hosts:

/etc/opt/quest/qpm4u/pm.settings

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
451

Related Topics

pmcheck

pmkey

pmlocald

pmmasterd

pmpasswd

pmreplay

pmsum

pmscp

Description

Use pmscp in conjunction with scp to launch the remote scp -t and scp -f daemons by
means of pmrun -h. This allows you to use Privilege Manager for Unix to launch the remote
scp daemons.

pmscp provides an alternate encryption channel for the scp command leaving authentication
requirements to your Privilege Manager for Unix policy. Either put /opt/quest/bin in your
PATH or use the absolute path.

Examples

To copy files to the /tmp directory on remote host, as root run the following:

scp -S pmscp <filename> user@remotehost:/tmp

pmserviced

Syntax

pmserviced [-d] [-n] [-s] [-v] [-z on|off[:<pid>]]

Description

The Privilege Manager for Unix service daemon, (pmserviced) is a persistent process that
spawns the configured Privilege Manager for Unix services on demand. The pmserviced

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
452

daemon is responsible for listening on the configured ports for incoming connections for the
Privilege Manager for Unix daemons. It is capable of running the pmmasterd, pmlocald,
pmclientd, and pmtunneld services.

Only one of pmmasterd and pmclientd may be enabled as they use the same TCP/IP port.
See the individual topics in PM settings variables on page 286 for more information about
these daemon settings.

Options

pmserviced has the following options.

Option Description

-d Logs debugging information such as connection received, signal receipt
and service execution.

By default, pmserviced only logs errors.

-n Does not run in the background or create a pid file. By default,
pmserviced forks and runs as a background daemon, storing its pid in
/var/opt/quest/qpm4u/pmserviced.pid. When you specify the -n option,
it stays in the foreground. If you also specify the -d option, error and
debug messages are logged to the standard error in addition to the log
file or syslog.

-s Connects to the running pmserviced and displays the status of the
services, then exits.

-v Displays the version number of Privilege Manager for Unix and exits.

-z Enables or disables tracing for pmserviced.

Refer to Enabling program-level tracing on page 179 before using this
option.

Table 80: Options: pmserviced

pmserviced Settings

pmserviced uses the following options in /etc/opt/quest/qpm4u/pm.settings to determine the
daemons to run, the ports to use, and the command line options to use for each daemon.

Daemon Name Flag to enable daemon Listen on port Command line options

pmclientd pmclientdEnabled masterport pmclientdOpts

pmlocald pmlocaldEnabled localport pmlocaldOpts

pmmasterd pmmasterdEnabled masterport pmmasterdOpts

pmtunneldOpts

Table 81: Options: pmserviced

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
453

Setting Description

pmservicedLog
pathname | syslog

Fully qualified path to the pmserviced log file or syslog.

pmmasterdEnabled
YES | NO

When set to YES, pmserviced runs pmmasterd on demand.

masterport
number

The TCP/IP port pmmasterd or pmclientd uses to listen.

pmmasterdOpts
options

Any command line options passed to pmmasterd.

pmlocaldEnabled
YES | NO

When set to YES, pmserviced runs pmlocald on demand.

localport number The TCP/IP port pmlocald uses to listen.

pmlocaldOpts
options

Command line options passed to pmmasterd.

pmclientdEnabled
YES | NO

When set to YES, pmserviced runs pmclientd on demand.

pmclientdOpts
options

Any command line options passed to pmclientd.

pmtunneldEnabled
YES | NO

When set to YES, pmserviced runs pmtunneld on demand.

tunnelport number The TCP/IP port pmtunneld uses to listen.

pmtunneldOpts Any command line options passed to pmtunneld.

Table 82: Settings: pmserviced

Files

l settings file: /etc/opt/quest/qpm4u/pm.settings

l pid file: /var/opt/quest/qpm4u/pmserviced.pid

Related Topics

pmlocald

pmmasterd

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
454

pmsh

Syntax

pmsh -a|-b|-c <file>|-e|-f|-i|-m|-n|-o <option>|-s|-u|-v|-x|-C|-E|-I|-B|-V
[-U <user>]

Description

The Privilege Manager for Unix Bourne Shell (pmsh) command is a fully featured version of
sh, that provides transparent authorization and auditing for all commands submitted during
the shell session. pmsh supports the standard options for sh.

Using the appropriate policy file variables, you can configure each command entered
during a shell session, to be:

l forbidden by the shell without further authorization to the policy server

l allowed by the shell without further authorization to the policy server

l presented to the policy server for authorization

Once allowed by the shell, or authorized by the policy server, all commands run locally as
the user running the shell program.

Options

pmsh has the following options.

Option Description

-a Flags variables for export when assignments are made to them.

-b Enables asynchronous notification of background job completion.
(UNIMPLEMENTED) .

-B Allows the shell to run in the background.

-c <file> Reads commands from a file instead of from standard input.

-C Does not overwrite existing files with `>'.

-e Exits immediately if any untested command fails in non-interactive
mode. The exit status of a command is considered to be explic- itly
tested if the command is part of the list used to control an if, elif, while,
or until; if the command is the left hand oper- and of an ``&&'' or ``||''
operator; or if the command is a pipe- line preceded by the ! operator.
If a shell function runs and its exit status is explicitly tested, all
commands of the function are considered to be tested as well.

Table 83: Options: pmsh

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
455

Option Description

-E Enables the built-in emacs(1) command line editor (disables the -V
option if it has been set; set automatically when interactive on
terminals).

-f Disables pathname expansion..

-h A do-nothing option for POSIX compliance.

-i Forces the shell to behave interactively.

-I Ignores EOF's from input when in interactive mode.

-m Turns on job control (set automatically when interactive).

-n If not interactive, reads commands but do not run them. This is useful
for checking the syntax of shell scripts.

-o <option> Sets the specified shell option. A list of shell options can be displayed
using the set -o builtin command.

-s Reads commands from standard input (set automatically if no file
arguments are present). This option has no effect when set after the
shell has already started running (i.e., when set with the set
command).

-u Writes a message to standard error when attempting to expand a
variable, a positional parameter or the special parameter ! that is not
set, and if the shell is not interactive, exit immediately.

-v The shell writes its input to standard error as it is read. Useful for
debugging.

-V Enables the built-in vi command-line editor (disables -E if it has been
set).

-x Writes each command (preceded by the value of the PS4 variable
subjected to parameter expansion and arithmetic expansion) to
standard error before it is run. Useful for debugging.

pmsh supports the following builtin commands:

., :, [, alias, bg, break, cd, chdir, command, continue, echo, eval, exec,
exit, export, false, fg, getopts, hash, jobs, kill, local, printf, pwd, read,
readonly, return, set, shift, test, times, trap, true, type, ulimit, umask,
unalias, unset, wait

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
456

pmshellwrapper

Syntax

pmshellwrapper

Description

Use the pmshellwrapper program as a wrapper for any valid login shell on a host. It
provides full keystroke logging for any normal shell, but does not provide authorization of
the commands run from the shell.

To use pmshellwrapper, you must create a link for the real shell you want to use.
For example:

ln –s /opt/quest/libexec/pmshellwrapper
/opt/quest/bin/pmshellwrapper_bash

When the user runs pmshell_bash, it transparently converts this to pmrun bash.

pmsrvcheck

Syntax

pmsrvcheck --csv [--verbose] | --help | --pmpolicy | --primary | --secondary

Description

Use pmsrvcheck to verify that a policy server is setup properly. It produces output in either
human-readable or CSV format similar to that produced by the preflight program.

The pmsrvcheck command checks:

l that the host is configured as a primary policy server and has a valid repository

l has a valid, up-to-date, checked-out copy of the repository

l has access to update the repository

l has a current valid Privilege Manager for Unix license

l pmmasterd is correctly configured

l pmmasterd can accept connections

pmsrvcheck produces output in either human-readable or CSV format similar to the pre-
flight output.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
457

Options

pmsrvcheck has the following options.

Option Description

--cvs Displays csv, rather than human-readable output.

--help Displays usage information.

--pmpolicy Verifies that Privilege Manager for Unix policy is in use by the policy
servers.

--primary Verifies a primary policy server.

--secondary Verifies a secondary policy server.

--verbose Displays verbose output while checking the host.

--version Displays the Privilege Manager for Unix version number and exits.

Table 84: Options: pmsrvcheck

Files

l Settings file: /etc/opt/quest/qpm4u/pm.settings

Related Topics

pmmasterd

pmsrvconfig

Checking the policy server

pmsrvconfig

Syntax

pmsrvconfig -h | --help [-abipqtv] [-d <variable>=<value>] [-f <path>]
[-l <license_file>]
[-m sudo | pmpolicy] [-n <group_name> | -s <hostname>]
[-x [<policy_server_host> ...]] [-bpvx] -u [--accept] [--batch]
[--define <variable>=<value>] [--import <path>] [--interactive]
[--license <license_file>]

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
458

[--name <group_name> | --secondary <hostname>]
[--pipestdin] [--plugin] [--policymode sudo | pmpolicy]

[--selinux] [--tunnel]
[--unix [<policy_server_host> ...]] [--verbose] [--batch]

[--unix] [-- verbose] --unconfig -N policy_name [--policyname policy_name]

Description

Use the pmsrvconfig command to configure or reconfigure a policy server. You can run it in
interactive or batch mode to configure a primary or secondary policy server.

Options

pmsrvconfig has the following options.

Option Description

-a | --accept Accepts the End User License Agreement (EULA),
/opt/quest/qpm4u/qpm4u_eula.txt.

-b | --batch Runs in batch mode; does not use colors or require
user input.

-d <variable>=<value> | --define
<variable>=<value>

Specifies a variable for the pm.settings file and its
associated value.

-h | --help Displays usage information.

-i | --interactive Runs in interactive mode; prompts for configuration
parameters instead of using the default values.

-f <path> | --import <path> Imports policy data from the specified path.

l Privilege Manager for Unix: The path may be
set to either a file or a directory when using
the pmpolicy type.

l Safeguard for Sudo: The path must be set to a
file when using the sudo policy type.

-l | --license <license_file> Specifies the full pathname of an .xml license file.
You can specify this option multiple times with
different license files.

-m sudo | pmpolicy | --policymode
sudo | pmpolicy

Specifies the type of security policy:

l sudo

l pmpolicy

Default: sudo

Table 85: Options: pmsrvconfig

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
459

Option Description

-n | --name <group_name> Uses group_name as the policy server group name.

-q | --pipestdin Pipes password to stdin if password is required.

-s | --secondary <hostname> Configures host to be a secondary policy server
where hostname is the primary policy server.

-S | --selinux Enable support for SELinux in Privilege Manager for
Unix.

An SELinux policy module will be installed, which
allows the pmlocal daemon to set the security
context to that of the run user when executing
commands. This requires that the policycoreutils
package and either the selinux-policy-devel (RHEL7
and above) or selinux-policy (RHEL6 and below)
packages be installed.

-t | --tunnel Configures host to allow Privilege Manager for Unix
connections through a firewall.

This option is only available when using the
pmpolicy policy type (Privilege Manager for Unix).

-u | --unconfig Unconfigures a Privilege Manager for Unix server.

-v | --verbose Displays verbose output while configuring the host.

-x | --unix [policy_server_host ...] Configures Privilege Manager for Unix on the local
policy server; that is, configures pmlocald and pmrun
to run on this host. If you do not specify a policy
server host, it uses the local host name.

This option is only available when using the
pmpolicy policy type (Privilege Manager for Unix).

Examples

The following example accepts the End User License Agreement (EULA) and imports the
sudoers file from /root/tmp/sudoers as the initial policy:

pmsrvconfig –a –f /root/tmp/sudoers

By using the –a option, you are accepting the terms and obligations of the EULA in full.

By default, the primary policy server you configure uses the host name as the policy server
group name. To provide your own group name, use the –n command option, like this:

pmsrvconfig –a –n <MyPolicyGroup>

where <MyPolicyGroup> is the name of your policy group.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
460

See Configuring the primary policy server for Privilege Manager for Unix on page 28 and
Policy servers are failing on page 180 for other usage examples.

Files

Directory where pmsrvconfig logs are stored: /opt/quest/qpm4u/install

Related Topics

pmrun

pmjoin

pmlocald

pmmasterd

pmpolicy

pmsrvinfo

Syntax

pmsrvinfo [--csv] | -v

Description

Use the pmsrvinfo command to display information about the group in either human
readable or CSV format. You can run this program on any server in the policy group.

Options

pmsrvinfo has the following options.

Option Description

--csv Displays information in .CSV format, instead of human readable
output.

-v Displays the Privilege Manager for Unix version number and exits.

Table 86: Options: pmsrvinfo

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
461

Examples

pmsrvinfo

Policy Server Configuration:

Privilege Manager for Unix version : 6.0.0 (nnn)
Listening port for pmmasterd daemon : 12345
Comms failover method : random
Comms timeout(in seconds) : 10
Policy type in use : pmpolicy
Group ownership of logs : pmlog
Group ownership of policy repository : pmpolicy
Policy server type : primary
Primary policy server for this group : adminhost1
Group name for this group : adminGroup1
Location of the repository :
file:////var/opt/quest/qpm4u/.qpm4u/.repository/pmpolicy_repos/trunk
Hosts in the group : adminhost1 adminhost2

Related Topics

Policy servers are failing

pmstatus

Syntax

pmstatus [-v] [-p <port>] [-h <hostname>] [-f <hostfile>] [-o <outfile>]

Description

The pmstatus program checks connectivity between Privilege Manager for Unix and
pmlocald and pmmasterd on the specified hosts. You must specify at least one host, using
either the -h or -f option.

Options

pmstatus has the following options.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
462

Option Description

-f <hostfile> Specifies the name of a file containing a list of hosts to check.

-h <hostname> Specifies the name of the host to check. -h supercedes -f if you specify
both options.

-o <outfile> Writes status information to the specified file.

-p <port> Specifies an alternative port to use when checking for connectivity with
pmmasterd.

-v Displays version information for the pmstatus program.

Table 87: Options: pmstatus

Examples

The following is an example of the output from pmstatus, if the command is directed
at a host that is contactable and that contains Privilege Manager for Unix
components:

[root@sdfbs02p linux-intel]# ./pmstatus -h sdfbs07p
Master process on sdfbs07p:12345 responded
Agent process on sdfbs07p:12346 responded

The following is an example of the output from pmstatus, if the command is directed
at a host that is contactable, but does not contain any Privilege Manager for Unix
components:

[root@sdfbs02p linux-intel]# ./pmstatus -h sdfbs07p
pmstatus5.0.2 (006): 3003 Could not connect to a master daemon for sdfbs07p
No master process responded on sdfbs07p:12345
pmstatus5.0.2 (006): 3001 Connection to pmlocald on sdfbs07p failed:
Connection refused
No agent process responded on sdfbs07p:12346

pmsum

Syntax

pmsum /<full_path_name>

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
463

Description

Use pmsum to generate a checksum of the named file. The output it produces can be used in
a policy with the runcksum variable. If the requested binary/command does not match the
checksum, it rejects the command.

Options

pmsum has the following options.

Option Description

-v Prints the version number of Privilege Manager for Unix and exits.

Table 88: Options: pmsum

Examples

pmsum /bin/ls
5591e026 /bin/ls

Related Topics

runcksum

pmsysid

Syntax

pmsysid [-i] | -v

Description

The pmsysid command displays the Privilege Manager for Unix system ID.

Options

pmsysid has the following options.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
464

Option Description

-i Shows the system host name and IP address.

-v Displays the Privilege Manager for Unix version and exits.

Table 89: Options: pmsysid

pmtunneld

Syntax

pmtunneld [[-v] | [-z on|off[:<pid>]] | [[-e <logfile>] [-s]]]

Description

The pmtunneld command acts as a proxy for pmrun when pmlocald communicates with pmrun
through a firewall.

Communication sent from pmlocald is transmitted using port number 12347, by default, and
received by pmtunneld. pmtunneld then transmits the data to pmrun. See Configuring
pmtunneld on page 143 for details.

Options

pmtunneld has the following options.

Option Description

-e <logfile> Logs any tunnel proxy daemon errors in the file specified.

-s Sends any tunnel proxy daemon errors to syslog.

-v Displays the version number of Privilege Manager for Unix and exits.

-z Enables or disables tracing for this program and optionally for a
currently running process.

Refer to Enabling program-level tracing on page 179 before using this
option.

Table 90: Options: pmtunneld

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
465

pmumacs

Syntax

pmumacs /<full_path_name>

Description

The pmumacs text editor is a special version of microemacs that you can use securely with
Privilege Manager for Unix programs; it is similar to the umacs editor. umacs is a small
version of emacs with gosling-style emacs key bindings. You must specify a full path name
as an argument when starting pmumacs. Also, you will not be able to access any files other
than the ones you specified at startup time nor spawn any processes.

Use pmumacs to allow users to access a specific file as root but no other root functions.

pmverifyprofilepolicy

Syntax

pmverifyprofilepolicy [-v | [-c][-z on|off[:<pid>]]] [-f <filename>]
[-p <policydir>]

Description

Use pmverifyprofilepolicy to verify the syntax and structure of the policy file and check
whether a particular command will be accepted or rejected. The policy is assumed to
match the format of the default profile policy; if it is not in the expected format, then it
displays an error for each file that is missing or is not in the correct format.

Options

pmverifyprofilepolicy has the following options.

Option Description

-c Displays output in csv, rather than human-readable, format.

The following line displays for each syntax error encountered:

PMCHECKERROR,<filename>,<linenumber>,<error_description>

The overall result displays in the following format:

Table 91: Options: pmverifyprofilepolicy

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
466

Option Description

PMVERIFYPROFILERESULT,<result>,<description>

where result can be: 0:success or -1:fail

For each file expected to contain data only, it prints the following line to
stdout for each statement found in the file that is not a comment or
variable assignment:

PMVERIFYPROFILECHECK,<filename>,<linenumber>,<description>

For each file expected to be unchanged, it prints the following line to
stdout:

PMVERIFYPROFILENOMATCH,<filename>,<linenumber>,<description>

-f <filename> Provides an alternative policy filename to check. If not fully qualified,
this path is interpreted as relative to the policydir, rather than to the
current directory.

-p <policydir> Forces pmverifyprofilepolicy to search for a different policy directory
for include files identified by relative path. The default location is the
policydir setting in pm.setting.

-v Prints the Privilege Manager for Unix version and exits.

-z Enables or disables debug tracing, and optionally sends SIGHUP to
running process.

Refer to Enabling program-level tracing on page 179 before using this
option.

pmvi

Syntax

pmvi /<full_path_name>

Description

The pmvi editor is a special version of vi that you can use securely with Privilege Manager
for Unix programs. You must specify a full path name as an argument when starting pmvi.
Also, you will not be able to access any files other than the ones you specified at startup
time nor spawn any processes.

Use pmvi to allow users to access a specific file as root but no other root functions.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Privilege Manager for Unix programs
467

Appendix F

Appendix:Installation Packages

Privilege Manager for Unix is comprised of the following packages:

l Privilege Manager for Unix product

Contains the Privilege Manager for Unix Policy Server and PM Agent components and
uses the native packaging system for each platform (RPM, PKG, etc).

l Safeguard for Sudo product

Contains the Safeguard Policy Server and Sudo Plugin components and uses the
native packaging system for each platform (RPM, PKG, etc).

l Preflight Binary

This is a stand-alone native binary for each platform (not zipped, tarred or
packaged). This binary exists stand-alone on the ISO to make it available for use
prior to installing software. It does not change any Privilege Manager for Unix
configuration on the host.

For more information, see Downloading Privilege Manager for Unix software
packages on page 22.

Package locations

Privilege Manager for Unix is provided in native platform install packages, which include
binary files, online man pages, installation files, and configuration file examples.

The install packages are located in the zip archive in two directories called:

l /server

l /agent

l /sudo_plugin

where <platform> is the name of the platform on which you are running Privilege
Manager for Unix.

There are three different packages:

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Installation Packages
468

l qpm-agent package, which contains only the client (pmrun) and agent (pmlocald)
components for Privilege Manager for Unix.

l qpm-server package, which contains the server (pmmasterd), the client (pmrun) and
agent (pmlocald), and the Sudo Plugin (qpm4u_plugin.so) components for Privilege
Manager for Unix.

l qpm-plugin package, which contains the offline policy cache server (pmmasterd), the
Sudo Plugin (qpm4u_plugin.so) components for Privilege Manager for Unix.

The Solaris server and agent packages have filenames that start with QSFTpmsrv and
QSFTpmagt, respectively.

Once installed, the packaged files are placed in an installation directory under /opt/quest
which contains subdirectories and files.

The platform directories contain the Privilege Manager for Unix installer packages for each
platform supported by Privilege Manager for Unix.

Platform Architecture

aix71-rs6k IBM®AIX 7.1, 7.2

freebsd-x86_64 FreeBSD on x86 64-bit architecture

hpux-hppa11 HP-UX 11.31 PA-RISC architecture

hpux11-ia64 HP-UX 11.31 Itanium architecture

linux-aarch64 Linux on ARM 64-bit architecture

linux-ia64 Linux on Itanium architecture

linux-intel Linux x86

linux-ppc64 Linux on ppc little endian 64-bit architecture

linux-ppc64le Linux on ppc little endian 64-bit architecture

linux-s390 Linux s390

linux-x86_64 Linux on x86 64-bit architecture

macos-x86_64 macOS on x86 64-bit architecture

Solaris-intel Solaris Intel architecture

Solaris-sparc SolarisSPARC® architecture

Table 92: Privilege Manager kit directories

Installed files and directories

The following table lists files and directories installed on your system.

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Installation Packages
469

Directories and files Description Created
by

/opt/quest/qpm4u Install directory containing
readme, default trial license file,
examples directory, templates,
etc.

INSTALL

/etc/opt/quest/qpm4u/pm.settings Configuration file for Privilege
Manager for Unix component
communications.

CONFIG

/etc/opt/quest/qpm4u/policy/pm.conf Default production policy file when
using the pmpolicy policy type.

CONFIG

/etc/opt/quest/qpm4u/policies Default production policy
framework directory when using
the pmpolicy type.

CONFIG

/etc/opt/quest/qpm4u/policies/sudoers Default production policy file for
the sudo policy type.

CONFIG

/opt/quest/bin Install directory containing the
binaries for user programs, such
as pmrun, pmksh and pmvi.

These user programs only apply to
Privilege Manager for Unix.

CONFIG

/opt/quest/sbin Install directory containing the
binaries for admin programs, such
as pmlog and pmreplay.

INSTALL

/opt/quest/lib Install directory for shared
libraries

INSTALL

/opt/quest/libexec Install directory for dynamically
loaded objects.

INSTALL

/opt/quest/man This directory contains all the man
pages for Privilege Manager for
Unix daemons and programs.

INSTALL

/opt/quest/qpm4u/examples This directory contains useful
programs, scripts, or examples
which show how to use Privilege
Manager for Unix. It also contains
a sample configuration file which
you can use as a template for
implementing your own policies.

These scripts and examples only

INSTALL

Table 93: Installed files and directories

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Installation Packages
470

Directories and files Description Created
by

apply to Privilege Manager for
Unix.

/opt/quest/qpm4u/license This file contains the license
information (policy server only).
For information about updating
license information, see pmlicense
on page 413.

INSTALL

/opt/quest/qpm4u/qpm4u_eula.txt This file contains the End User
License Agreement for the
Privilege Manager for Unix
product.

INSTALL

/opt/quest/qpm4u/README. <archi-
tecture>

This file contains the latest inform-
ation about your version of
Privilege Manager for Unix.

INSTALL

/var/opt/quest/qpm4u/iolog This directory contains the
keystroke logs.

EVENTDATA

/var/opt/quest/qpm4u/pmevents.db This file contains the event logs. EVENTDATA

Privilege Manager for Unix 7.1 Administration Guide

Appendix: Installation Packages
471

About us

About us

One Identity solutions eliminate the complexities and time-consuming processes often
required to govern identities, manage privileged accounts and control access. Our solutions
enhance business agility while addressing your IAM challenges with on-premises, cloud and
hybrid environments.

Contacting us

For sales and other inquiries, such as licensing, support, and renewals, visit
https://www.oneidentity.com/company/contact-us.aspx.

Technical support resources

Technical support is available to One Identity customers with a valid maintenance contract
and customers who have trial versions. You can access the Support Portal at
https://support.oneidentity.com/.

The Support Portal provides self-help tools you can use to solve problems quickly and
independently, 24 hours a day, 365 days a year. The Support Portal enables you to:

l Submit and manage a Service Request

l View Knowledge Base articles

l Sign up for product notifications

l Download software and technical documentation

l View how-to videos at www.YouTube.com/OneIdentity

l Engage in community discussions

l Chat with support engineers online

l View services to assist you with your product

Privilege Manager for Unix 7.1 Administration Guide

About us
472

https://www.oneidentity.com/company/contact-us.aspx
https://support.oneidentity.com/
http://www.youtube.com/OneIdentity

I ndex

A

adminmenu

command usage example 100

usage example 134

agent

configuration 36

installation 35, 43

join to policy group 43

join to policy server 35

agent configuration

verify 44

agent package

installation 48

alertkeyaction variable

usage 147

alerts

setting 147

application and file availability require-
ment 26

audit (event) log 157

about 57

access 445

back up and archive 163

choose and display entries 420

global variables 282

auditing

with InTrust for Active Directory 166

Authentication Services functions 388

B

back up and archive logs 163

Backup and Recovery 56

basic menus example 114

basica policy example 103

Best Practice:

create custom policy in profile_
customer_policy.conf 59, 63

writing policy 137

break statement

about 309

usage example 99

built-in functions

Authentication Services 388

environment 311

hash table 319

input and output 323

LDAP 330

list 344

miscellaneous 351

password 371

remote access 374

string 379

user information 384

C

case statement

usage example 99, 133

centralized log server

configure 157

certificates

configure 145

generate 410

Privilege Manager for Unix 7.1 Administration Guide

Index
473

Index

certification

enable configurable 146

check for installation readiness 24

checkout policy

demonstration 86

checksum

require for authorization 11

command constraints

usage example 126

Command:

authenticate_pam 149

pmbash 396

pmcheck 398

pmclientd 401

pmclientinfo 402

pmcp 403

pmcsh 404

pmincludecheck 406

pminfo 407

pmjoin 36, 408

pmkey 410

pmksh 411

pmless 412

pmlicense 413

pmlist 416

pmloadcheck 417

pmlocald 418

pmlog 420

pmlogadm 424

pmlogsearch 427

pmlogsrvd 431

pmmasterd 433

pmmg 434

pmpasswd 435

pmpolicy 435

pmpolicyconvert 442

pmpolsrvconfig 443

pmremlog 445

pmreplay 447

pmresolvehost 449

pmrun 450

pmscp 452

pmserviced 452

pmsh 455

pmshellwrapper 457

pmsrvcheck 457

pmsrvconfig 29, 458

pmsrvinfo 461

pmstatus 462

pmsum 463

pmsysid 464

pmtunneld 465

pmumacs 466

pmverifyprofilepolicy 466

pmvi 467

commands

allowed 118

built-in 119

forbidden 118

conditional keystroke logging
example 108

conditional privilege example 104

configurable certification 145

enable 146

configuration

verify agent 44

verify policy server 34

configuration file

check syntax 398

configure environmental
variables 140

Privilege Manager for Unix 7.1 Administration Guide

Index
474

configure to send mail 140

multiple 139

configuration file examples 123

configuration file policy

example 1 124

example 10 134

example 2 125

example 3 126

example 4 127

example 5 127

example 6 130

example 7 130

example 8 131

example 9 133

configuration prerequisites

about 122

configure policy to send mail 140

configuring

alerts 147

certificates 145

firewalls 141

Kerberos encryption 144

logging 151

PAM 148

policy scripting 122

shell features 116

Control Flow Statement:

accept 296

break 297

continue 297

do-while 298

for loop 299-300

function 301, 304

if-else 301

include 302

procedure 304

readonly 305

readonlyexcept 306

return 307

switch 308

while 309

controlling execution environment
example 111

custom shell

create 117

D

daemons

determine which ones to run 452

data types

policy scripting 185

DEBUG environment variable

set 140

debug info

profile-based policy 178

program-level tracing 179

disk space

estimating requirements 14

downloading Privilege Manager for Unix
software packages 22

E

encryption

about 5, 45

considerations 11

environment functions 311

environment variables

about 140

define 119

set 89

Privilege Manager for Unix 7.1 Administration Guide

Index
475

environmental controls

SUB-TERM 98

error logs

specify locations 152

event (audit) log 157

about 57

access 445

back up and archive 163

choose and display entries 420

global variables 282

listing 161

event logging

about 153

variables 153

example policy file

example1 103

example10 114

example2 104

example3 105

example4 106

example5 107

example6 108

example7 109

example8 111

example9 113

install 86

F

failover considerations 11

file and directory locations 469

firewalls

about 25

configuring 141

flow control example 113

forbid list takes precedence over auth
list 66

Function:

append 345

atoi 352

authenticate_pam 353

authenticate_pam_toclient 354

basename 355

comparehosts 355

datecmp 356

dirname 356

feature_enabled 357

fileexists 358

fprintf 324

getenv 312

getfullname 384

getgroup 385

getgrouppasswd 372

getgroups 386

gethome 386

getshell 387

getstringpasswd 372

getuserpasswd 373

glob 361

hashtable_add 319

hashtable_create 320

hashtable_enum 321

hashtable_import 321

hashtable_lookup 322

ingroup 362

innetgroup 362

innetuser 363

input 324

inputnoecho 325

insert 345

Privilege Manager for Unix 7.1 Administration Guide

Index
476

join 346

keepenv 315

ldap_ bind 331

ldap_count_entries 332

ldap_dn2ufn 333

ldap_explode_dn 333

ldap_first_attribute 334

ldap_first_entry 335

ldap_get_attributes 336

ldap_get_dn 336

ldap_get_values 337

ldap_next_attribute 338

ldap_next_entry 338

ldap_open 339

ldap_search 340

ldap_unbind 341

length 347

lineno 364

lsubst 347

match 379

mktemp 364

osname 365

print 326

printf 326

printnnl 327

printvars 328

quote 365

rand 366

range 348

readdir 328

readfile 329

remotefileexists 374

remotegroupinfo 375

remotegrouplist 376

remotesysinfo 376

remoteusergroups 377

remoteuserinfo 378

remoteuserlist 378

replace 348

search 349

setenv 318

split 349

splitSubst 350

sprintf 329

stat 366

strftime 367

strindex 381

strlen 381

strsub 382

subst 383

substr 383

syslog 330

system 368

timebetween 369

tolower 369

toupper 370

uname 371

unsetenv 318

vas_auth_user_password 388

vas_host_in_ADgrouplist 389

vas_host_is_member 389

vas_user_get_groups 390

vas_user_in_ADgrouplist 390

vas_user_is_member 390

Functions

syntax and usage 311

G

global variables

event log 282

Privilege Manager for Unix 7.1 Administration Guide

Index
477

input 191

output 243

group

display information 461

group names

associate with set of hosts 141

reserved 14, 26

H

hardware

requirements 12

hash table functions 319

host

specify trusted 141

verify copy of policy 457

verify host is listening on the primary
policy server 180

host system

requirements 12

hosts database

about 26

I

I/O (keystroke) log

about 161

access 445

back up and archive 163

I/O logs 157

innetgroup

usage example 141

input and output functions 323

install

agent software packages 35, 43

Intrust knowledge pack 170

Management console 22

options 16

secondary server 40

server packages 27

installation

agent package 48

considerations 11

enterprise deployment 19

large business deployment 18

medium business deployment 17

packages 468

readiness check 24

server package 48

single host 17

summary of steps 21

InTrust

configure data collection 172

gathering data 174

generate reports 173

install knowledge pack 170

install reporting pack 171

knowledge pack objects 171

view reports 172

InTrust plug-in

components 167

prerequisites 168

requirements 167

J

join password

configuring secondary server 41

or pmpolicy password 28

setting 29

Privilege Manager for Unix 7.1 Administration Guide

Index
478

K

Kerberos encryption

configuring 144

keystroke (I/O) log

about 161

access 445

back up and archive 163

keystroke logging

about 155

example 107

pmpolicy type 155

L

LDAP API

example 342

LDAP functions 330

lexical productions

defined 182

license

display or modify current info 413

display usage 53

install 53

options 15

verify 457

licensing

about 15

list functions 344

list variables

about 93

usage example 127

load balancing

about 45

local daemon hosts

about 27

local logging 152

log access daemon 431

log data

limit amount 151

log files

about 151

display in real time 447

navigate 127, 448

replay 447

view using command line tools 159

view using web browser 159

log size

controlling 158

logging

about 6

configure central 157

configure error logging 152

controls 151

limiting what is sent 158

variables 151

M

mail messages

send 140

Management console

install 22

uninstall 23

master policy server daemon

about 433

masterport 12

masters

estimating requirements 14

Privilege Manager for Unix 7.1 Administration Guide

Index
479

menu system

implementing 100, 134

minimum space considerations 11

miscellaneous functions 351

N

navigate log files 448

netgroups 141

Network Address Translation

configure 144

NIS netgroups 141

O

operators and expressions

about 186

output results

about logging 6

P

package

locations 468

removal 47

packages

installed with product 468

PAM

authenticate 149

authentication usage example 149

configuring 148

Pluggable Authentication Method 148

parallel lists

usage example 136

password

functions 371

pmpolicy password 28

PATH variable

update 28

piped commands

allow 118

Pluggable Authentication Method

PAM 148

PM Agent

check configuration status 52

check for readniess 42

pm.conf

example 101

pm.settings variables 286

pmloadcheck

keeps policy up to date 179

pmpolicy 63

customizing 83-84

security policy 7

service account 57

pmpolicy service account password

setting 29

pmshell_allow

usage example 118

pmshell_forbid

usage example 118

pmshellwrapper

usage example 117

pmtunneld

configure 143

policy

about 63, 66

basic menus 100

conditional keystroke logging 95

conditional privileges 91

flow control 99

keystroke logging 93

Privilege Manager for Unix 7.1 Administration Guide

Index
480

learn specific commands 92

learn the basics 90

list variables 93

modifying 60

optimizations 96

view and edit 435

view changes 61

policy configuration file

about 7

components 182, 392

policy file

control flow of logic 295

install lesson example 86

status 51

policy file components

Authentication Services
functions 388

built-in functions 311

data types 185

event log variables 282

flow control statements 295

hash table functions 319

input variables 191

input/output functions 323

LDAP functions 330

list functions 344

miscellaneous functions 351

operators and expressions 186

output variables 243

password functions 371

pm.settings variables 286

remote access functions 374

string functions 379

user info functions 384

variable names 190

variable scope 191

variables 190

policy file configuration

accept or reject requests 125

basics 124

command constraints 126

complex policies 130

lists 127

logging and replay 127

menus 134

run-time environment 131

switch and case statements 133

variables 130

policy file revisions

differences 55

list 55

policy files

samples 101

policy group

about 9

policy optimization example 109

policy optimization with list variables
example 106

policy scripting 86

about 122

data types 185

reserved words 295

variables 190

policy server

about 27

check state and configuration 51

check status 52

configuration settings 29

configure for InTrust plugin 168

configure primary or secondary 458

Privilege Manager for Unix 7.1 Administration Guide

Index
481

display information 461

reconfigure 458

report basic configuration
information 50

set up 28

synchronization 41

verify configuration 34, 180

verify host to server
communication 52

policy server daemon hosts

about 27

policy server master daemon

about 433

policy types (or modes) 57

policy variables 66

policy writing

best practices 137

ports

about 141

considerations 11

recommendations 142

requirements 12

restrict 25, 142

preflight

about 24

for PM Agent 42

primary policy server

requirements 12

verify configuration on host 457

Privilege Manager for Unix

about 3

audit capabilities 5

benefits 3

components 6

downloading software packages 22

installation 21

introduction 2

licensing 15

privileges required 14

profile

about 81

profile-based policy

about 57, 59, 63-64

profile variables 59, 63-64, 66

profiles are roles in the mangement
console 66

R

remote access functions 374

remove

Safeguard 49

replay controls

usage example 93

repository

verify policy 457

request

reject 141

test if accepted or rejected 398

requirements

disk space 14

hardware 12

host system 12

masters 14

ports 12

primary policy server 12

software 12

reserved

user and group names 14

reserved words

policy scripting 295

restrict port 142

Privilege Manager for Unix 7.1 Administration Guide

Index
482

restricted mode

running shells 119

role (or profile) property settings 66

roles are called profiles 66

S

Safeguard

remove 49

sample policy files 101

search logs 427

search patterns 349, 361

security

about 14

add additional layer using
pmtunneld 143

security policy

about 57

manage 57, 435

specify type 59

server

configure secondary 41

install secondary 40

server package

install 27, 48

service

restart 180

verify service is enabled 180

verify service is running 180

service principal names

specify 144

shell

about shell features 117

built-in commands 119

configuring features 116

consideratioins 120

restricted mode 119

shell profile variables 59, 63-64

software

requirements 12

specific commands example 105

string functions 379

subsidiary configuration file

usage example 139

supported platforms 13

swap certificate keys 39

switch statement

usage example 99, 133

synchronizing

policy servers 41

syntactic productions

defined 182

system administration actions

partition 4

system overview 6

system requirements 12

T

TCP/IP configuration 25

Troubleshooting:

check config file syntax 398

cross-policy configurations are not
supported 57

failover status 179

host is listening on the primary policy
server 180

load balancing status 179

policy server configuration 180

server-host communication
issues 180

service is enabled 180

Privilege Manager for Unix 7.1 Administration Guide

Index
483

service is running 180

unsupported configurations 57

update expired license 413

U

uninstall

Management console 23

server package 49

software packages 46

Unix agent

supported platforms 13

upgrade considerations 47

user information functions 384

user names

reserved 14, 26

V

variable names are not case
sensitive 286

variable scope 191

Variable:

alertdate 283

alertkeyaction 246

alertkeymatch 195

alertkeysequence 247

alerttime 283

argc 196

argv 197

client_parent_pid 198

client_parent_procname 199

client_parent_uid 198

clienthost 200

command 200

cwd 201

date 201

day 202

dayname 203

disable_exec 247

domainname 204

env 204

event 284

eventlog 248

eventloghost 248

execfailedmsg 249

exitdate 285

exitstatus 285

exittime 286

false 205

FEATURE_LDAP 206

FEATURE_VAS 206

gid 207

group 207

groups 208

host 208

hour 209

iolog 249

iolog_encrypt 250

iolog_errmax 251

iolog_opmax 252

iologhost 253

log_passwords 253

logomit 254

logstderr 255

logstdin 255

logstdout 256

masterhost 210

masterversion 210

minute 210

month 211

Privilege Manager for Unix 7.1 Administration Guide

Index
484

nice 212

nodename 212

notfoundmsg 257

passprompts 257

pid 214

pmclient_type 214

pmclient_type_pmrun 215

pmclient_type_sudo 216

pmshell 216

pmshell_allow 258

pmshell_allowpipe 259

pmshell_builtin 217

pmshell_checkbuiltins 259

pmshell_cmd 218

pmshell_cmdtype 219

pmshell_exe 220

pmshell_forbid 260

pmshell_interpreter 221

pmshell_prog 222

pmshell_readonly 261

pmshell_reject 262

pmshell_restricted 263

pmshell_script 223

pmshell_uniqueid 224

pmversion 225

preserve_clienthost 264

profile_keepenv 264

profile_setenv 265

profile_unsetenv 265

profile_use_runuser 266

ptyflags 226

rejectmsg 266

requestlocal 227

requestuser 227

runargv 267

runchroot 267

runcksum 268

runclienthost 269

runcommand 269

runconfirmuser 270

runcwd 271

runenv 271

rungroup 272

rungroups 273

runhost 273-274

runpaths 274

runptyflags 275

runtimeout 279

runumask 279

runuser 280

runutmpuser 280

samaccount 231

status 231

submithost 232

submithostip 232

subprocuser 281

thishost 233

time 234

tmplogdir 281

true 234

ttyname 235

tzname 235

uid 236

umask 237

unameclient 237

uniqueid 238

use_rundir 238

use_rungroup 239

use_rungroups 240

use_runshell 240

Privilege Manager for Unix 7.1 Administration Guide

Index
485

user 242

year 242

variables

define 119

event log 282

input 191

output 243

pm.settings 286

policy scripting 190

profile (or role) 66

read-only 139

user-defined 66

W

whatis database 35

while loop

usage example 136

while statement

about 309

Privilege Manager for Unix 7.1 Administration Guide

Index
486

	About this guide
	Introducing Privilege Manager for Unix
	What is Privilege Manager for Unix
	Benefits of Privilege Manager for Unix
	How Privilege Manager for Unix protects
	Partition root safely
	Create an indelible audit trail
	Encryption

	How Privilege Manager for Unix works
	Policy configuration file (pmpolicy security policy)
	Policy group

	Planning Deployment
	System requirements
	Supported platforms
	Reserve special user and group names
	Required privileges

	Estimating size requirements
	Privilege Manager for Unix licensing
	Deployment scenarios
	Single host deployment
	Medium business deployment
	Large business deployment
	Enterprise deployment

	Installation and Configuration
	Downloading Privilege Manager for Unix software packages
	Quick start and evaluation
	Installing the Management Console
	Uninstalling the Management Console

	Configure a Primary Policy Server
	Checking the server for installation readiness
	TCP/IP configuration
	Firewalls
	Hosts database
	Reserve special user and group names
	Applications and file availability
	Policy server daemon hosts
	Local daemon hosts

	Installing the Privilege Manager for Unix packages
	Modifying PATH environment variable

	Configuring the primary policy server for Privilege Manager for Unix
	pmpolicy server configuration settings
	Verifying the primary policy server configuration
	Recompile the whatis database

	Join hosts to policy group
	Joining PM Agent to a Privilege Manager for Unix policy server

	Configure a secondary policy server
	Installing secondary servers
	Configuring a secondary server
	Synchronizing policy servers within a group

	Install PM Agent on a remote host
	Checking PM Agent host for installation readiness
	Installing a PM Agent on a remote host
	Joining the PM Agent to the primary policy server
	Verifying PM Agent configuration
	Load balancing on the client

	Remove configurations
	Uninstalling the Privilege Manager for Unix software packages

	Upgrade Privilege Manager for Unix
	Before you upgrade
	Upgrading Privilege Manager for Unix packages
	Upgrading the server package
	Upgrading the PM Agent package

	Removing Privilege Manager for Unix packages
	Removing the server package
	Removing the PM Agent package

	System Administration
	Reporting basic policy server configuration information
	Checking the status of the master policy
	Checking the policy server
	Checking policy server status
	Checking the PM Agent configuration status
	Installing licenses
	Displaying license usage

	Listing policy file revisions
	Viewing differences between revisions
	Backup and recovery

	Managing Security Policy
	Security policy types
	Specifying security policy type
	pmpolicy type policy
	Modifying complex policies
	Viewing the security profile changes

	The Privilege Manager for Unix Security Policy
	Default profile-based policy (pmpolicy)
	Policy profiles
	Profile-based policy files
	Profile selection
	Profile variables

	Exploring profiles
	Customizing the default profile-based policy (pmpolicy)
	Customization example - pf_forbidusers list

	Policy scripting tutorial
	Install the example policy file
	Create test users
	Set Lesson number variable
	Introductory lessons
	Lesson 1: Basic policy
	Lesson 2: Conditional privilege
	Lesson 3: Specific commands
	Lesson 4: Policy optimization with list variables
	Lesson 5: Keystroke logging
	Lesson 6: Conditional keystroke logging
	Lesson 7: Policy optimizations

	Advanced lessons
	Lesson 8: Controlling the execution environment
	Lesson 9: Flow control
	Lesson 10: Basic menus

	Sample policy files
	Main policy configuration file
	Lesson 1 Sample: Basic policy
	Lesson 2 Sample: Conditional privilege
	Lesson 3 Sample: Specific commands
	Lesson 4 Sample: Policy optimizations with list variables
	Lesson 5 Sample: Keystroke logging
	Lesson 6 Sample: Conditional keystroke logging
	Lesson 7 Sample: Policy optimizations
	Lesson 8 Sample: Controlling the execution environment
	Lesson 9 Sample: Flow control
	Lesson 10 Sample: Basic menus

	Advanced Privilege Manager for Unix Configuration
	Privilege Manager for Unix shells
	Privilege Manager for Unix shell features
	Forbidden commands
	Allowed commands
	Allowed piped commands
	Check shell built-in commands
	Read-only variable list
	Running a shell in restricted mode
	Additional shell considerations

	Configuring Privilege Manager for Unix for policy scripting
	Configuration prerequisites
	Configuration file examples
	Example 1: Basics
	Example 2: Accept or reject requests
	Example 3: Command constraints
	Example 4: Lists
	Example 5: I/O logging, event logging, and replay
	Example 6: More complex policies
	Example 7: Use variables to store constraints
	Example 8: Control the run-time environment
	Example 9: Switch and case statements
	Example 10: Menus

	Use the while loop
	Use parallel lists
	Best practice policy guidelines
	Multiple configuration files and read-only variables
	Mail
	Environmental variables
	NIS netgroups
	Specify trusted hosts

	Configuring firewalls
	Privilege Manager for Unix port usage
	Restricting port numbers for command responses
	Configuring pmtunneld
	Configuring Network Address Translation (NAT)

	Configuring Kerberos encryption
	Configuring certificates
	Enable configurable certification

	Configuring alerts
	Configuring Pluggable Authentication Method (PAM)
	Utilizing PAM authentication
	Authenticate PAM to client

	Administering Log and Keystroke Files
	Controlling logs
	Local logging
	Event logging
	Keystroke (I/O) logging
	Keystroke (I/O) logging policy variables

	Central logging with Privilege Manager for Unix
	Controlling log size with Privilege Manager for Unix
	Viewing the log files using a web browser
	Viewing the log files using command line tools
	Listing event logs
	Backing up and archiving event and keystroke logs

	InTrust Plug-in for Privilege Manager for Unix
	InTrust Plug-in requirements
	Installing InTrust Plug-in components
	InTrust Plug-in installation prerequisites
	Configuring the policy server for the InTrust Plug-in
	Installing the InTrust Knowledge Pack
	InTrust Knowledge Pack objects

	Installing the InTrust Reporting Pack
	Configuring the InTrust data collection
	Viewing InTrust reports
	Generating reports
	Gathering InTrust data

	Troubleshooting
	Displaying profile-based policy debug information
	Enabling program-level tracing
	Load balancing and policy updates
	Policy servers are failing

	Appendix: Privilege Manager for Unix Policy File Components
	Lexical and syntactic productions
	Data types
	Operators and expressions

	Appendix: Privilege Manager for Unix Variables
	Variable names
	Variable scope
	Global input variables
	alertkeymatch
	argc
	argv
	bkgd
	client_parent_pid
	client_parent_uid
	client_parent_procname
	clienthost
	command
	cwd
	date
	day
	dayname
	domainname
	env
	false
	FEATURE_LDAP
	FEATURE_VAS
	gid
	group
	groups
	host
	hour
	masterhost
	masterversion
	minute
	month
	nice
	nodename
	optarg
	opterr
	optind
	optopt
	optreset
	optstrictparameters
	pid
	pmclient_type
	pmclient_type_pmrun
	pmclient_type_sudo
	pmshell
	pmshell_builtin
	pmshell_cmd
	pmshell_cmdtype
	pmshell_exe
	pmshell_interpreter
	pmshell_prog
	pmshell_script
	pmshell_uniqueid
	pmversion
	ptyflags
	requestlocal
	requestuser
	rlimit_as
	rlimit_core
	rlimit_cpu
	rlimit_data
	rlimit_fsize
	rlimit_locks
	rlimit_memlock
	rlimit_nofile
	rlimit_nproc
	rlimit_rss
	rlimit_stack
	samaccount
	selinux
	status
	submithost
	submithostip
	thishost
	time
	true
	ttyname
	tzname
	uid
	umask
	unameclient
	unamemaster
	uniqueid
	use_rundir
	use_rungroup
	use_rungroups
	use_runshell
	user
	year

	Global output variables
	alertkeyaction
	alertkeysequence
	disable_exec
	eventlog
	eventloghost
	execfailedmsg
	iolog
	iolog_encrypt
	iolog_errmax
	iolog_opmax
	iologhost
	log_passwords
	logomit
	logstderr
	logstdin
	logstdout
	notfoundmsg
	passprompts
	pmshell_allow
	pmshell_allowpipe
	pmshell_checkbuiltins
	pmshell_forbid
	pmshell_readonly
	pmshell_reject
	pmshell_restricted
	preserve_clienthost
	profile_keepenv
	profile_setenv
	profile_unsetenv
	profile_use_runuser
	rejectmsg
	runargv
	runbkgd
	runchroot
	runcksum
	runclienthost
	runcommand
	runconfirmuser
	runcwd
	runenablerlimits
	runenv
	rungroup
	rungroups
	runhost
	runnice
	runpaths
	runptyflags
	runrlimit_as
	runrlimit_core
	runrlimit_cpu
	runrlimit_data
	runrlimit_fsize
	runrlimit_locks
	runrlimit_memlock
	runrlimit_nofile
	runrlimit_nproc
	runrlimit_rss
	runrlimit_stack
	runtimeout
	runumask
	runuser
	runutmpuser
	subprocuser
	tmplogdir

	Global event log variables
	alertdate
	alerttime
	event
	exitdate
	exitstatus
	exittime

	PM settings variables

	Appendix: Privilege Manager for Unix Flow Control Statements
	accept, reject
	break
	continue
	do-while
	for loop
	for loop
	function
	if-else
	include
	procedure / function
	readonly
	readonlyexcept
	return
	switch
	while

	Appendix: Privilege Manager for Unix Built-in Functions and Procedures
	Environment functions
	getenv
	getlistsetting
	getnumericsetting
	getstringsetting
	getyesnosetting
	keepenv
	policygetenv
	policysetenv
	policyunsetenv
	setenv
	unsetenv

	Hash table functions
	hashtable_add
	hashtable_create
	hashtable_enum
	hashtable_import
	hashtable_lookup

	Input and output functions
	fprintf
	input
	inputnoecho
	print
	printf
	printnnl
	printvars
	readdir
	readfile
	sprintf
	syslog

	LDAP functions
	ldap_ bind
	ldap_count_entries
	ldap_dn2ufn
	ldap_explode_dn
	ldap_first_attribute
	ldap_first_entry
	ldap_get_attributes
	ldap_get_dn
	ldap_get_values
	ldap_next_attribute
	ldap_next_entry
	ldap_open
	ldap_search
	ldap_unbind

	LDAP API example
	List functions
	append
	insert
	join
	length
	lsubst
	range
	replace
	search
	split
	splitSubst

	Miscellaneous functions
	atoi
	authenticate_pam
	authenticate_pam_toclient
	basename
	comparehosts
	datecmp
	dirname
	feature_enabled
	fileexists, access
	getopt
	getopt_long
	getopt_long_only
	glob
	ingroup
	innetgroup
	innetuser, inusernetgroup
	lineno
	mktemp
	osname
	quote
	rand
	stat
	strftime
	system
	timebetween
	tolower
	toupper
	uname

	Password functions
	getgrouppasswd
	getstringpasswd
	getuserpasswd

	Remote access functions
	remotefileexists
	remotegroupinfo
	remotegrouplist
	remotesysinfo
	remoteusergroups
	remoteuserinfo
	remoteuserlist

	String functions
	match
	pad
	strindex
	strlen
	strsub
	sub
	subst
	substr

	User information functions
	getfullname
	getgroup
	getgroups
	gethome
	getshell

	Authentication Services functions
	vas_auth_user_password
	vas_host_in_ADgrouplist
	vas_host_is_member
	vas_user_get_groups
	vas_user_in_ADgrouplist
	vas_user_is_member

	Appendix: Privilege Manager for Unix programs
	pmbash
	pmcheck
	pmclientd
	pmclientinfo
	pmcp
	pmcsh
	pmincludecheck
	pminfo
	pmjoin
	pmkey
	pmksh
	pmless
	pmlicense
	pmlist
	pmloadcheck
	pmlocald
	pmlog
	pmlogadm
	pmlogsearch
	pmlogsrvd
	pmmasterd
	pmmg
	pmpasswd
	pmpolicy
	pmpolicyconvert
	pmpolsrvconfig
	pmremlog
	pmreplay
	Navigating the log file

	pmresolvehost
	pmrun
	pmscp
	pmserviced
	pmsh
	pmshellwrapper
	pmsrvcheck
	pmsrvconfig
	pmsrvinfo
	pmstatus
	pmsum
	pmsysid
	pmtunneld
	pmumacs
	pmverifyprofilepolicy
	pmvi

	Appendix: Installation Packages
	Package locations
	Installed files and directories

	About us
	Contacting us
	Technical support resources

	Index

