(ONE IDENTITY

by Quest

One Identity Safeguard for Privileged
Sessions 6.0.11

Creating custom Authentication and
Authorization plugins

Copyright 2021 One Identity LLC.

ALL RIGHTS RESERVED.

This guide contains proprietary information protected by copyright. The software described in this
guide is furnished under a software license or nondisclosure agreement. This software may be used
or copied only in accordance with the terms of the applicable agreement. No part of this guide may
be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording for any purpose other than the purchaser’s personal use without the
written permission of One Identity LLC .

The information in this document is provided in connection with One Identity products. No license,
express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of One Identity LLC products. EXCEPT AS SET FORTH IN THE
TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE AGREEMENT FOR THIS PRODUCT,

ONE IDENTITY ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR
STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. IN NO EVENT SHALL ONE IDENTITY BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF

ONE IDENTITY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. One Identity makes
no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and product descriptions at any
time without notice. One Identity does not make any commitment to update the information
contained in this document.

If you have any questions regarding your potential use of this material, contact:

One Identity LLC.
Attn: LEGAL Dept

4 Polaris Way

Aliso Viejo, CA 92656

Refer to our Web site (http://www.Oneldentity.com) for regional and international office
information.

Patents

One Identity is proud of our advanced technology. Patents and pending patents may apply to this
product. For the most current information about applicable patents for this product, please visit our
website at http://www.Oneldentity.com/legal/patents.aspx.

Trademarks

One Identity and the One Identity logo are trademarks and registered trademarks of One Identity
LLC. in the U.S.A. and other countries. For a complete list of One Identity trademarks, please visit
our website at www.Oneldentity.com/legal. All other trademarks are the property of their
respective owners.

Legend

€ | WARNING: A WARNING icon highlights a potential risk of bodily injury or property
damage, for which industry-standard safety precautions are advised. This icon is
often associated with electrical hazards related to hardware.

CAUTION: A CAUTION icon indicates potential damage to hardware or loss of data
if instructions are not followed.

SPS Creating custom Authentication and Authorization plugins
Updated - 19 August 2021, 11:31
Version - 6.0.11

http://www.oneidentity.com/
http://www.oneidentity.com/legal/patents.aspx
http://www.oneidentity.com/legal

Contents

Introduction . 4
How the Authentication and Authorization plugin works 5
Plugin packaging ... 8
Including additional modules ... 8
The MANIFEST flle ... 9
AP VIS ONING . 10
The available Python environments ... 11
The main.py module ... 12
QUL N Cate 13
AUEN O ZE 20
SESSION N .. 24
EX A D S 25
TIPS AN TriCKS o 27
The sample configuration file (default.cfg) 28
Plugin troubleshooting 29
Integrating SPS to ticketing systems 30
A Ot US 31
CoNtaCtiNG US . 31
Technical SUPPOIt FESOUICES 31

@NE |DENT|TY SPS 6.0.11 Creating custom Authentication and Authorization plugins 3

Quest

Introduction

The following sections provide an overview on creating custom plugins for One Identity
Safeguard for Privileged Sessions (SPS) to authenticate your users to external services in
addition to the authentication performed on the target server. For example, such plugins
can implement two-factor authentication (2FA) or multi-factor authentication (MFA)
methods, or request the user to provide a valid ticket ID for the connection. For details on
using an existing plugin, see "Integrating external authentication and authorization
systems" in the Administration Guide.

A | CAUTION:

Using custom plugins in SPS is recommended only if you are familiar with
both Python and SPS. Product support applies only to SPS: that is, until the
entry point of the Python code and passing the specified arguments to the
Python code. One Identity is not responsible for the quality, resource
requirements, or any bugs in the Python code, nor any crashes, service
outages, or any other damage caused by the improper use of this feature,
unless explicitly stated in a contract with One Identity. If you want to
create a custom plugin, contact our Support Team for details and
instructions.

Every SPS plugin is a Python module. SPS invokes the module to request the password of
the target user. The plugin processes the request, returns the result to SPS and exits. SPS
then processes the result.

The backup and restore functionality of SPS handles the uploaded plugins as part of SPS's
configuration. You do not need to create separate backups of your plugins.

@NE IDENTITY SPS 6.0.11 Creating custom Authentication and Authorization plugins

by Quest Introduction

https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.11/administration-guide/advanced-authentication-and-authorization-techniques/integrating-external-authentication-and-authorization-systems/
https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.11/administration-guide/advanced-authentication-and-authorization-techniques/integrating-external-authentication-and-authorization-systems/
https://support.oneidentity.com/one-identity-safeguard-for-privileged-sessions

How the Authentication and
Authorization plugin works

If a Connection Policy has an Authentication and Authorization plugin (AA plugin)
configured, One Identity Safeguard for Privileged Sessions (SPS) executes the plugin as the
last step of the connection authorization phase. SPS can request the client to perform other
types of authentication before executing the plugin. Using an AA plugin in a Connection
Policy is treated as gateway authentication if:

» the plugin authenticates the user
« authentication is successful

o the plugin returns the gateway_user and gateway_groups elements, identifying the
user it has authenticated

Other types of gateway authentication will come before authentication by the AA plugin,
so information from any other type of gateway authentication (for example, the username
and usergroups of this authentication) will already be available and therefore can be used
by the plugin. If the Authentication and Authorization plugin does perform gateway
authentication, you can use a Credential Store as well.

However, for technical reasons, the web-based gateway authentication (that s,
authenticating on the SPS web interface if the Require Gatweay Authentication on the
SPS Web Interface option is selected in the Connection Policy) is performed after the AA
plugin, so using AA plugin and ticking Require Gateway Authentication on the SPS
Web Interface at the same time is not a valid configuration.

The plugin can interactively request additional information from the client in the SSH,
Telnet, and RDP protocols.

@NE IDENTITY SPS 6.0.11 Creating custom Authentication and Authorization plugins

by Quest How the Authentication and Authorization plugin works

© | NOTE: In SPS 5.8, a user's group membership is determined by querying only the
relevant groups configured for the connection from the LDAP/AD server, instead of
retrieving all groups of a given user.

This may cause problems when using AD/LDAP-based gateway authentication
together with an AA plugin. The AA plugin authorize() hook may be called with only a
subset of groups as group membership lookup does not consider groups referenced in
the AA plugin code.

As a possible workaround, you can add a rule to the channel policy assigned to the
connection that never matches (for example, set the From address to 0.0.0.0/32),
but contains all the gateway groups that the plugin requires. This channel rule will
never match, but it will cause SPS to evaluate if a user is a member of those groups,
and will make them available for the plugin if so.

Note that only groups queried by SPS are affected. Gateway groups returned by the
AA plugin authenticate() hook are passed to the authorize() hook unchanged.

SPS executes the authorize method after the authentication method and any inband
gateway authentication or inband destination selection steps. As a result, the authorize
method already has access to the IP address of the target server and the remote username
(the username used in the server-side connection).

Optionally, the plugin can return the gateway user and gateway groups values. SPS will only
update the gateway username and gateway groups fields in the connection database if the
plugin returns the gateway_user and gateway_groups values. The returned gateway_user
and gateway_groups values override any such attributes already available on SPS about the
connection (that means that channel policy evaluations will be affected), so make sure that
the plugin uses the original values appropriately.

If the plugin returns the gateway_user and gateway_groups values, you may have to
configure an appropriate Usermapping policy in the Connection Policy. If the plugin
returns a gateway_user that is different from the remote user, the connection will fail
without a usermapping policy. For details on usermapping policies, see "Configuring
usermapping policies" in the Administration Guide.

Prerequisites

« SPS supports Authentication and Authorization plugins in the RDP, SSH, and
TELNET protocols.

« In RDP, using an AA plugin together with Network Level Authentication in a
Connection Policy has the same limitations as using Network Level Authentication
without domain membership. For details, see "Network Level Authentication without
domain membership" in the Administration Guide.

« In RDP, using an AA plugin requires TLS-encrypted RDP connections. For details, see
"Enabling TLS-encryption for RDP connections" in the Administration Guide.

Optionally, the plugin can return the gateway user and gateway groups elements. SPS will
only update the gateway username and gateway groups fields in the connection database if
the plugin returns the gateway_user and gateway_groups elements. The returned gateway
username and gateway groups override any such attributes already available on SPS about
the connection, so make sure that the plugin uses the original values appropriately.

@NE IDENTITY SPS 6.0.11 Creating custom Authentication and Authorization plugins

Quest How the Authentication and Authorization plugin works

https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.11/administration-guide/advanced-authentication-and-authorization-techniques/configuring-usermapping-policies/
https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.11/administration-guide/advanced-authentication-and-authorization-techniques/configuring-usermapping-policies/
https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.11/administration-guide/rdp-specific-settings/network-level-authentication-nla-with-one-identity-safeguard-for-privileged-sessions-sps/network-level-authentication-without-domain-membership/
https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.11/administration-guide/rdp-specific-settings/network-level-authentication-nla-with-one-identity-safeguard-for-privileged-sessions-sps/network-level-authentication-without-domain-membership/
https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.11/administration-guide/rdp-specific-settings/enabling-tls-encryption-for-rdp-connections/

If the plugin returns the gateway_user and gateway_groups elements, you may have to
configure an appropriate Usermapping Policy in the Connection Policy. If the plugin
returns a gateway_user that is different from the remote user, the connection will fail
without a Usermapping Policy. For details on Usermapping Policies, see "Configuring
usermapping policies" in the Administration Guide.

@NE IDENTITY SPS 6.0.11 Creating custom Authentication and Authorization plugins

by Quest How the Authentication and Authorization plugin works

https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.11/administration-guide/advanced-authentication-and-authorization-techniques/configuring-usermapping-policies/
https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.11/administration-guide/advanced-authentication-and-authorization-techniques/configuring-usermapping-policies/

Plugin packaging

An SPS plugin is a .zip file that contains a MANIFEST file (with no extension) and a Python
module named main.py in its root directory. The plugin .zip file may also contain an
optional default.cfg file that serves to provide an example configuration, which you can
use as a basis for customization if you wish to adapt the plugin to your site's needs. The
size of the .zip file is limited to 20 megabytes.

Including additional modules

You can invoke additional Python modules from main.py, provided that the total size of
the .zip bundle does not exceed 20 megabytes and all calls are executed within the
plugin timeout.

The modules must be compatible with the selected Python environment. For more
information, see the available Python environments.

@NE IDENTITY SPS 6.0.11 Creating custom Authentication and Authorization plugins

by Quest Plugin packaging

../../../../../Content/Guides/integrations/credstore-plugin/safeguard-credential-store-plugin-py-env.htm

The MANIFEST file

The MANIFEST file is a YAML file and should conform to version 1.2 of the YAML specification.

It must contain the following information about the plugin:

« name: The identifier of the plugin during the upload to SPS. The initial character must
be an alphabetical character, while the rest may be alphabetical characters, numerals
or'_'. While case sensitivity is supported, special characters (for example, '@' or '&")
are not permitted.

o description: The description of the plugin. This description is displayed on the SPS
web interface.

« version: The version number of the plugin. It must begin with a numeral (for
example, 2.0.3).

« type: The type of the plugin. It must be credentialstore for a Credential Store plugin
and aa for an Authentication and Authorization plugin.

o api: The version number of the required SPS API. The current version numberis1.1.

It may contain the following elements:

e entry point: main.py: The custom entry point of the plugin. If ommitted, the plugin
will be executed with Python2 interpreter. If included, the plugin will be executed
with an interpreter specified on the first line of the main.py file. For more information,
see the available Python environments.

e scb_min_version: The minimum syslog-ng Store Box product version compatible with
the plugin. For example, 5.10.0 means 5F10.

o scb_max_version: The maximum compatible syslog-ng Store Box product version. To
allow any version below a certain value, add the ~charater. For example, 5.11.0~
means "any version up till, but not including, 5.11.0".

Example

name: name: SPS_RADIUS

description: RADIUS (RSA) MFA plugin plugin
version: 2.0.3

type: aa

api: 1.1

entry_point: main.py

@NE IDENTITY SPS 6.0.11 Creating custom Authentication and Authorization plugins

by Quest The MANIFEST file

http://yaml.org/spec/
../../../../../Content/Guides/integrations/aa-plugin/aa-plugin-py-env.htm

API versioning

SPS supports only a single version of the plugin API.
The required version of SPS API must be in <major number>.<minor number> format.

O [NOTE:

SPS uses semantic versioning for the API. That is, if the plugin requires API version
<x>.<y>, the API version's <major number> must be equal to <x> and the <minor
number> must be equal to, or greater than, <y>. Otherwise the plugin cannot be
uploaded.

For example, if the API version of SPS is 1.3, SPS can use plugins with the required
API version numbers 1.0, 1.1, 1.2, and 1.3. Versions 1.4 and 2.0 will not work.

Currently the API version numberis 1.1.

Plugin versioning with Python2 legacy plugins

For Python2 legacy plugins the api: version should be 1.e.

Plugin versioning for Python3 plugins using the Plugin SDK module

For Python3 plugins using the Plugin SDK module the api: version should be the same as
the <major number>.<minor number> version of the Plugin SDK. That is, if the Plugin SDK
version is 1.2, write api: 1.2 in the MANIFEST file.

O | NOTE:

The plugin does not need to be upgraded as long as the <major number> version
remains the same, therefore the plugin should work with 1.3, 1.4 or higher API
versions.

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY plugins | 10

by Quest
The MANIFEST file

The available Python environments

If you have no entry_point in the MANIFEST file

The plugins must be compatible with Python version 2.6.5, and have access to the following
Python modules:

e dns

e httplib

e json

e 1xml

e openssl

e urllib

e urllib2

e xml

e xmllib

e xmlrpclib

If you have entry_point: main.py in the MANIFEST file (the main.py starting
with '#!/usr/bin/env pluginwrapper3')
In this case, the plugin must be Python 3.6.7 compatible. The plugin has access to these
Python 3 modules:
oneidentity_safeguard_sessions_plugin_sdk (version == 1.1.2,
https://oneidentity.github.io/safeguard-sessions-plugin-sdk/1.1.2/)

© | NOTE:

The <major> and <minor> version number of Plugin SDK is always equal to the SPS
API version of the same release.

The Plugin SDK module mentioned above is a tool that allows you to reliably access SPS
features and can be downloaded from Downloads page. In addition, the Plugin SDK module
also allows you to develop or test plugins outside SPS. For more detailed information about
the Plugin SDK module, see the Developer's Guide here.

e pyOpenSSL (version >»= 17.5.0, https://pyopenssl.org/en/17.5.0/index.html)

e python-ldap (version >= 3.0.0, https://www.python-ldap.org/en/python-1ldap-
3.0.9/)

e requests (version >= 2.18.4, http://docs.python-requests.org/en/master/)
e urllib3 (version »>= 1.22, https://urllib3.readthedocs.io/en/latest/)
e pyyaml (version >= 3.12, https://pyyaml.org/)

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY plugins | 11

by Quest
The available Python environments

https://support.oneidentity.com/my-downloads
https://oneidentity.github.io/safeguard-sessions-plugin-sdk/1.1.2/

The main.py module

The main.py file is a Python module that the framework attempts to execute. The following
restrictions apply:

o Themain.py module must contain the Plugin class. SPS searches for the plugin hook
implementations under the Plugin class. SPS instantiates this class and invokes the
hooks on the resulting instance.

o The Plugin class must have an __init_ (self, configuration="") method. Thisis
how the Configuration (for example, at Policies >AA Plugin Configuration >
Configuration or Policies > Credential Stores > Configuration) is passed to
the Plugin instance as string.

o The Plugin class must have member methods for all defined hooks.

The plugin is executed when a predefined entry point (hook method) is invoked. After
returning the result, the plugin exits immediately.

@ | NOTE:

Plugins have a global timeout limit. The plugin timeout is half of the timeout value of
the protocol proxy that uses the plugin (configured on the <Protocol name>
Control > Settings page of the SPS web interface). By default, the proxy timeout is
600 seconds,therefore the default plugin timeout is 300 seconds.

Hooks can be defined with zero or more arguments and can usually return None or a dict
with the appropriate keys. The order of the hook arguments is not defined. Instead, all
arguments are passed by name.

All arguments are optional. Only the arguments actually used in the hook need to
be specified.

No global state is preserved inbetween calls. Therefore, you have to use the cookie key in
the returned dictionary to persist data between subsequent calls of the same plugin or
between the different methods of a plugin. The cookie should be a dictionary containing
simple data items. It has to be serializable to JSON. To persist data between two different
plugins used in the same session, use the session_cookie key.

You can use (**kwargs) to get all possible call arguments in a hook, including the
cookie argument.

The following hooks must all be implemented:

. authenticate on page 13: Called to identify the user connecting through SPS.

o authorize on page 20: Called when the remote username and the address of the
target server are available (after the authentication hook and any inband gateway
authentication or inband destination selection are completed).

« session_ended on page 24: Called when the session is closed. It is called exactly once
for the same session. For example, you can use this hook to send a log message
related to the entire session, or close the ticket related to the session if the plugin
interacts with a ticketing system.

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY plugins | 12

Quest
The main.py module

authenticate

The authenticate method performs the authentication of the session and returns a verdict
that determines if SPS permits the connection to continue to the target server.

Example

def authenticate(self,
session_id,
protocol,
connection_name,
client_ip,
client_port,
key value_pairs):

return {

'verdict':

‘my_key':

'ACCEPT',

‘additional_metadata':

'my_value',

‘my_metadata“',

You must implement the authenticate method in the plugin.

0 | TIP:

If you do not want to do anything in this method, include an empty method that
returns the ACCEPT verdict.

Example

def authenticate (self):
return {
'verdict': 'ACCEPT',

}

In addition, no gateway authentication has been performed by the plugin if the
authenticate method returns:

« None.
o Thedict {'verdict': "NONE'}.

SPS 6.0.11 Creating custom Authentication and Authorization
plugins

(GNE IDENTITY

by Quest

13

The main.py module

Input arguments

The order of the arguments does not make a difference, only their names do. Every
argument is optional.

e session_id
Type: string

Description: The unique identifier of the session.

cookie
Type: dictionary

Description: The cookie returned by the previous hook in the session. If this is the
first call for that session, it is initialized as an empty dictionary, otherwise it has the
value returned by one of the previous calls in this particular AA plugin. You can use
the cookie to maintain the state for each particular connection or to transfer
information between the different methods of the plugin. For an example that
transfers information in the cookie between two methods, see Examples on page 25.

e session_cookie
Type: dictionary

Description: You can use the session cookie to maintain global state between plugins
for each particular connection. If this is the first call for that session, it is initialized as
an empty dictionary, otherwise it has the value returned by a previous plugin hook in
the session.

e connection_name
Type: string

Description: The name of the Connection policy that handles the client's
connection request.

e client_ip
Type: string

Description: A string containing the IP address of the client.

e client_port

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY plugins | 14

Quest
The main.py module

Type: int

Description: The port number of the client.

e gateway_user
Type: string

Description: Contains the gateway username of the client if already available (for
example, if the user performed inband gateway authentication), otherwise its
value is None.

e key value_pairs
Type: dictionary

Description: A dictionary containing plugin-specific information (for example, it may
include a token ID). This dictionary also contains any key-value pairs that the user
specified. In the plugin, such fields are already parsed into separate key-value pairs.
For details on how the user can provide such data during a connection, see
"Integrating external authentication and authorization systems" in the
Administration Guide.

e protocol
Type: string

Description: The protocol used in the connection that the plugin is currently
processing. Enter one of the following values: rdp, ssh, telnet.

o target_server
Type: string or None

Description: Contains information about the target server if already available (for
example, if the user performed inband gateway authentication), otherwise its
value is None.

o target_port
Type: integer or None

Description: Contains information about the target port if already available (for
example, if the user performed inband gateway authentication), otherwise its
value is None.

o target_username

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY plugins | 15

Quest
The main.py module

https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.11/administration-guide/advanced-authentication-and-authorization-techniques/integrating-external-authentication-and-authorization-systems/
https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.11/administration-guide/advanced-authentication-and-authorization-techniques/integrating-external-authentication-and-authorization-systems/

Type: string or None

Description: Contains information about the target username if already available
(for example, if the user performed inband gateway authentication), otherwise its
value is None.

Returned values

The method must return a dictionary with the following (required or optional) elements.
The required elements are:

« verdict, which must contain one of the following returned values:
o ACCEPT, which returns gateway user and gateway_groups together.
o NEEDINFO, which returns question.
o DENY
o NONE

The optional elements are:

e cookie

e session_cookie

e additional metadata
o gateway_user

e gateway_groups

e question
The elements in more detail:

e verdict

Type: string

Required: yes

Description: Must contain one of the following values:

« ACCEPT:The authentication was successful, the client can continue the
connection

If the plugin returns both gateway users and gateway groups elements, it
means that gateway authentication has been performed.

« DENY: Reject the connection.
o NEEDINFO: The authentication requires more information to be completed.

« NONE: No gateway authentication was performed by the plugin.

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY plugins | 16

Quest
The main.py module

For example, the following sample code rejects the connection.

Example

return {'verdict': 'DENY'}

e cookie

Type: dictionary

Required: no

Description: The cookie returned by the previous hook in the session. If this is
the first call for that session, it is initialized as an empty dictionary, otherwise it
has the value returned by one of the previous calls in this particular AA plugin.
You can use the cookie to maintain the state for each particular connection or
to transfer information between the different methods of the plugin. For an
example that transfers information in the cookie between two methods, see
Examples on page 25.

e session_cookie

Type: dictionary

Required: no

Description: You can use the session cookie to maintain global state between
plugins for each particular connection. If this is the first call for that session, it
is initialized as an empty dictionary, otherwise it has the value returned by a
previous plugin hook in the session.

e additional_metadata

Description: The value of this string will be stored in the Additional
metadata column of the SPS connection database, and will be available on
the SPS search interface.

e gateway_user

Type: string

Required: no

e gateway_groups

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY plugins | 17

by Quest
The main.py module

Type: list

Required: no

Description: Optionally, the plugin can return the gateway_user and gateway_
groups values. SPS will only update the gateway username and gateway
groups fields in the connection database if the plugin returns the gateway user
and gateway_groups values. The returned gateway_user and gateway_ groups
values override any such attributes already available on SPS about the
connection (which means that channel policy evaluations will be affected), so
make sure that the plugin uses the original values appropriately.

0 | NOTE:

If the plugin returns the gateway user and gateway_groups values, you
may have to configure an appropriate Usermapping Policy in the
Connection Policy. If the plugin returns a gateway_user that is different
from the remote user, the connection will fail without a Usermapping
Policy. For details on Usermapping Policies, see "Configuring
usermapping policies" in the Administration Guide.

For example, the following sample code accepts the connection and sets the
gateway_user and gateway_groups fields. (Naturally, you should write the plugin
code that actually retrieves these data from the third-party system.) For
details, see Examples on page 25.

Example
return {
'verdict': 'ACCEPT',
'gateway_user': 'username-received-from-third-party’,

'gateway groups': [
'usergroupl-received-from-third-party"',
'usergroup2-received-from-third-party'

. V.

e question

Type: tuple

Required: no

Description: A tuple that contains key-question pairs and optionally a third
element to disable echoing. You can use it to request additional information
from the client when using the NEEDINFO verdict in RDP, Telnet, and SSH

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY plugins | 18

by Quest
The main.py module

https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.11/administration-guide/advanced-authentication-and-authorization-techniques/configuring-usermapping-policies/
https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.11/administration-guide/advanced-authentication-and-authorization-techniques/configuring-usermapping-policies/

connections. For example, the following sample code displays a prompt (in this
case, Enter your token number) to the user. For details, see Examples on page

25.
Example
return {
'verdict': 'NEEDINFO',
"question’': ('token', 'Enter your token number: ')
}

If the optional third element is True, the answer will not be echoed to the client.
O | TIP:

Set the third element to True if the answer to the question is sensitive
information (for example, a password).

Example
return {
'verdict': 'NEEDINFO',
"question': ('token', 'Enter your token number: ',
True)
}

Note that in SPS version 4.3.0 and 4.3.1, question was a dictionary. Starting
with version 4.3.2, itis a tuple.

Requesting more information from the client

To request additional information from the client (for example, a one-time password from a
token, or a ticket ID), the authenticate method may return the NEEDINFO verdict and the
question tuple containing key-question pairs. The questions are asked from the userin a
protocol-specific way and the authenticate method is called again with a key_value_pairs
argument containing the answers in key-answer pairs, where the key belongs to the

corresponding question. Alternatively, you can also use the cookie to supply additional
information to the plugin.

= SPS 6.0.11 Creating custom Authentication and Authorization
(GNE IDENTITY

lugins
by Quest piug 19

The main.py module

authorize

The authorize method performs the authorization of the session and returns a verdict that
determines if SPS permits the connection to continue to the target server. This method is
executed only once. SPS executes the authorize method after the authentication method,
and any inband gateway authentication or inband destination selection steps. As a result,
the authorize method already has access to the IP address of the target server and the
remote username (the username used in the server-side connection). You must implement
the authorize method in the plugin.

0 |TIP:

If you do not want to do anything in this method, include an empty method that
returns the ACCEPT verdict. Otherwise, the connection will fail with the following log
message: Calling Authorize hook of AA plugin failed.

Example

def authorize (self):
return {'verdict': 'ACCEPT'}

Input arguments

The order of the arguments does not make a difference, only their names do. Every
argument is optional.

e session_id
Type: string

Description: The unique identifier of the session.

e cookie
Type: dictionary

Description: The cookie returned by the previous hook in the session. If this is the
first call for that session, it is initialized as an empty dictionary, otherwise it has the
value returned by one of the previous calls in this particular AA plugin. You can use
the cookie to maintain the state for each particular connection or to transfer
information between the different methods of the plugin. For an example that
transfers information in the cookie between two methods, see Examples on page 25.

e session_cookie

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY plugins | 20

by Quest
The main.py module

Type: dictionary

Description: You can use the session cookie to maintain global state between plugins
for each particular connection. If this is the first call for that session, it is initialized as
an empty dictionary, otherwise it has the value returned by a previous plugin hook in
the session.

e connection_name
Type: string

Description: The name of the Connection Policy that handles the client's
connection request.

e client_ip
Type: string

Description: A string containing the IP address of the client.

e client_port
Type: int

Description: The port number of the client.

e gateway_groups
Type: string list

Description: The final gateway groups of the gateway user.

e key_value_pairs
Type: dictionary

Description:

A dictionary containing plugin-specific information (for example, it may include
the username).

This dictionary also contains any key-value pairs that the user specified when
establishing the connection. In the plugin, such fields are already parsed into
separate key-value pairs. For details on how the user can provide such data during a
connection, see "Integrating external authentication and authorization systems" in
the Administration Guide.

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY plugins | 21

by Quest
The main.py module

https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.11/administration-guide/advanced-authentication-and-authorization-techniques/integrating-external-authentication-and-authorization-systems/
https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.11/administration-guide/advanced-authentication-and-authorization-techniques/integrating-external-authentication-and-authorization-systems/

e protocol
Type: string

Description: The protocol used in the connection that the plugin is currently
processing. Enter one of the following values: rdp, ssh, telnet.

e client_port
Type: int

Description: The port number of the client.

o target_server

Type: string or None

Description: Contains information about the target server if already available (for
example, if the user performed inband gateway authentication), otherwise its
value is None.

o target_port

Type: integer or None

Description: Contains information about the target port if already available (for
example, if the user performed inband gateway authentication), otherwise its
value is None.

o target_username
Type: string
Description: The username SPS uses to authenticate on the target server.

Returned values

The method must return a dictionary with the following (required or optional) elements.

The required elements are:

« verdict, which must contain one of the following returned values:

o ACCEPT, which indicates that the authentication was successful and the client
can continue the connection.

« DENY, which rejects the connection.

The optional elements are:

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY plugins | 22

Quest
The main.py module

e cookie
e session_cookie

e additional metadata
The elements in more detail:

e verdict
Type: string
Must contain one of the following values:

« ACCEPT: The authentication was successful, the client can continue the
connection.

« DENY: Reject the connection.

For example, the following sample code rejects the connection.

Example

return {
‘verdict': 'DENY'
}

\. J

e cookie

Type: dictionary

Required: no

Description: The cookie returned by the previous hook in the session. If this is the
first call for that session, it is initialized as an empty dictionary, otherwise it has the
value returned by one of the previous calls in this particular AA plugin. You can use
the cookie to maintain the state for each particular connection or to transfer
information between the different methods of the plugin. For an example that
transfers information in the cookie between two methods, see Examples on page 25.

e session_cookie

Type: dictionary

Required: no

Description: You can use the session cookie to maintain global state between plugins
for each particular connection. If this is the first call for that session, it is initialized as

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY plugins | 23

by Quest
The main.py module

an empty dictionary, otherwise it has the value returned by a previous plugin hook in
the session.

e additional metadata

Type: string

Required: no

Description: The value of this string will be stored in the Additional metadata
column of the SPS connection database, and will be available on the SPS
search interface.

session_ended

A session is the logical unit of user connections: it starts with logging in to the target, and
ends when the connection ends. SPS executes the session_id hook when the session is
closed. It is called exactly once for the same session.

0 | TIP:

You can use this hook to send a log message related to the entire session or close the
ticket related to the session if the plugin interacts with a ticketing system.

You must implement the session_ended method in the plugin.

Input arguments

e session_id
Type: string

Description: The unique identifier of the session.

e cookie
Type: dictionary

Description: The cookie returned by the previous hook in the session. If this is the
first call for that session, it is initialized as an empty dictionary, otherwise it has the
value returned by one of the previous calls in this particular AA plugin. You can use
the cookie to maintain the state for each particular connection or to transfer
information between the different methods of the plugin. For an example that
transfers information in the cookie between two methods, see Examples on page 25.

e session_cookie

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY plugins | 24

Quest
The main.py module

Type: dictionary

Description: You can use the session cookie to maintain global state between plugins
for each particular connection. If this is the first call for that session, it is initialized as

an empty dictionary, otherwise it has the value returned by a previous plugin hook in
the session.

Returned values

This hook does not return values.

session_ended example

The following example formats every information received in the cookie into key-value
pairs and prints a log message including this information into the log file.

Example

def session_ended(self, session_id, session_cookie, cookie):
session_details = ',"'.join(['{@}={1}".format(
key, cookie[key]) for key in sorted cookie.keys()
D)
print("Session ended; session_id='{@}', session_details="'{1}""
format(session_id, session_details))

Examples

The following example checks if the user has entered the string good as the token number.
If the value of the token number is anything other than good, the plugin displays a prompt

to the user up to three times. After three unsuccessful attempts, the plugin terminates the
connection.

Example

def authenticate(self, key value pairs, cookie):
if key_value_pairs.get('token') == "good":
return {'verdict': 'ACCEPT'}

cookie['cnt'] = cookie.get('cnt', @) + 1

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY

lugins
by Quest piug 25

The main.py module

if cookie['cnt'] > 3:
return {'verdict': 'DENY'}

return {'verdict': 'NEEDINFO',
'question': ('token', 'Enter token number: '),
'cookie': cookie

The following example shows how to use the cookie to transfer data from the authenticate
method to the session_ended method.

Example

import sys

class Plugin(object):

def authenticate(self, session_id, cookie, protocol,
connection_name, client_ip, client_port, key value pairs):
token = key value_pairs.pop('token', None)

Accept the connection if the user provides a token number
if token:
Write code here that validates the token number and
retrieves the username and usergroups of the user
We add the client_ip to the 'cookie' so it will be
available in the session_ended method as well

return {
'verdict': 'ACCEPT',
'gateway_user': 'username-received-from-third-party’,

'gateway_groups': [
'usergroupl-received-from-third-party’,
'usergroup2-received-from-third-party'],

'additional_metadata': token,

'cookie': {'client_ip': client_ip}

Display a prompt to the user to request a token number
else:
return {
'verdict': 'NEEDINFO',
'question': ('token', 'Enter your token number: ')

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY plugins | 26

by Quest
The main.py module

}

def session_ended(self, session_id, cookie):
session_details = ', '.join([
'{0}={1}"'.format(key, cookie[key]) for key in
sorted(cookie.keys())

D

Send a log message when the session ends, including the

client_ip address received in the cookie

print("Session ended; session_id='{@}', session_details="'{1}
format(session_id, session_details))

Tips and tricks

If you need the public hostname of SPS in the plugin, the plugin can read it from the
/etc/hostnickname file.

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY plugins | 27

by Quest
The main.py module

The sample configuration file
(default.cfg)

Your plugin .zip file may contain an optional default.cfg sample configuration file. This file
serves to provide an example configuration that you can use as a basis for customization if
you wish to adapt the plugin to your site's needs.

The only prerequisites for this file are as follows:
« It must be a UTF-8 encoded text file.
« The size of the file must not exceed 10 KiB.

Other than these prerequisites, the contents of the file are not restricted in any way.

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY plugins | 28

by Quest
The sample configuration file (default.cfg)

Plugin troubleshooting

On the default log level, One Identity Safeguard for Privileged Sessions (SPS) logs
everything that the plugin writes to stdout and stderr. Log message lines are prefixed with
the session ID of the proxy, which makes it easier to find correlating messages.

To transfer information between the methods of a plugin (for example, to include data in a
log message when the session is closed), you can use a cookie.

If an error occurs while executing the plugin, SPS automatically terminates the session.

O | NOTE:

This error is not visible in the verdict of the session. To find out why the session was
terminated, you have to check the logs.

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY plugins | 29

by Quest
Plugin troubleshooting

Integrating SPS to ticketing
systems

From SPS 5 LTS and later, this functionality is available using the Authentication and
Authorization (AA) plugin.SPS executes the authorize method after the authentication
method, and any inband gateway authentication or inband destination selection selection
steps. As a result, the authorize method already has access the IP address of the target
server, and the remote username (that is, the username used in the server-side
connection).

To use an AA plugin to integrate SPS to a ticketing system, note the following points.

« You can only request the ticket ID or other information from the user in the
authentication hook (authenticate on page 13). For details on how the user can
provide such data during a connection, see "Integrating external authentication and
authorization systems" in the Administration Guide.

« You must implement the actual authorization (for example, connecting and querying
the ticketing system) in authorize on page 20. As a side effect, if the user submits an
invalid ticket ID (or other invalid information) in the authentication hook, this error
will not be recognized until the authorization hook. The user cannot correct this error
and SPS will reject the connection. In this case, the user must initiate a new
connection to provide the correct information.

o Only the Remote Desktop (RDP), Secure Shell (SSH), and Telnet protocols are
supported.

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY plugins | 30

by Quest
Integrating SPS to ticketing systems

https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.11/administration-guide/advanced-authentication-and-authorization-techniques/integrating-external-authentication-and-authorization-systems/
https://support.oneidentity.com/technical-documents/safeguard-for-privileged-sessions/6.0.11/administration-guide/advanced-authentication-and-authorization-techniques/integrating-external-authentication-and-authorization-systems/

About us

One Identity solutions eliminate the complexities and time-consuming processes often
required to govern identities, manage privileged accounts and control access. Our solutions
enhance business agility while addressing your IAM challenges with on-premises, cloud and
hybrid environments.

Contacting us

For sales and other inquiries, such as licensing, support, and renewals, visit
https://www.oneidentity.com/company/contact-us.aspx.

Technical support resources

Technical support is available to One Identity customers with a valid maintenance contract
and customers who have trial versions. You can access the Support Portal at
https://support.oneidentity.com/.

The Support Portal provides self-help tools you can use to solve problems quickly and
independently, 24 hours a day, 365 days a year. The Support Portal enables you to:

« Submit and manage a Service Request

« View Knowledge Base articles

« Sign up for product notifications

. Download software and technical documentation

« View how-to videos at www.YouTube.com/Oneldentity
« Engage in community discussions

o Chat with support engineers online

« View services to assist you with your product

SPS 6.0.11 Creating custom Authentication and Authorization

(GNE IDENTITY plugins | 31

by Quest
About us

https://www.oneidentity.com/company/contact-us.aspx
https://support.oneidentity.com/
http://www.youtube.com/OneIdentity

	Introduction
	How the Authentication and Authorization plugin works
	Plugin packaging
	Including additional modules

	The MANIFEST file
	API versioning

	The available Python environments
	The main.py module
	authenticate
	authorize
	session_ended
	Examples
	Tips and tricks

	The sample configuration file (default.cfg)
	Plugin troubleshooting
	Integrating SPS to ticketing systems
	About us
	Contacting us
	Technical support resources

