(ONE IDENTITY

by Quest

syslog-ng Premium Edition 6 LTS

Sending out messages stuck in
syslog-ng disk queue files

Copyright 2022 One Identity LLC.

ALL RIGHTS RESERVED.

This guide contains proprietary information protected by copyright. The software described in this
guide is furnished under a software license or nondisclosure agreement. This software may be used
or copied only in accordance with the terms of the applicable agreement. No part of this guide may
be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording for any purpose other than the purchaser’s personal use without the
written permission of One Identity LLC .

The information in this document is provided in connection with One Identity products. No license,
express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of One Identity LLC products. EXCEPT AS SET FORTH IN THE
TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE AGREEMENT FOR THIS PRODUCT,

ONE IDENTITY ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR
STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. IN NO EVENT SHALL ONE IDENTITY BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF

ONE IDENTITY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. One Identity makes
no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and product descriptions at any
time without notice. One Identity does not make any commitment to update the information
contained in this document.

If you have any questions regarding your potential use of this material, contact:

One Identity LLC.
Attn: LEGAL Dept

4 Polaris Way

Aliso Viejo, CA 92656

Refer to our Web site (http://www.Oneldentity.com) for regional and international office
information.

Patents

One Identity is proud of our advanced technology. Patents and pending patents may apply to this
product. For the most current information about applicable patents for this product, please visit our
website at http://www.Oneldentity.com/legal/patents.aspx.

Trademarks

One Identity and the One Identity logo are trademarks and registered trademarks of One Identity
LLC. in the U.S.A. and other countries. For a complete list of One Identity trademarks, please visit
our website at www.Oneldentity.com/legal. All other trademarks are the property of their
respective owners.

Legend

€ | WARNING: A WARNING icon highlights a potential risk of bodily injury or property
damage, for which industry-standard safety precautions are advised. This icon is
often associated with electrical hazards related to hardware.

CAUTION: A CAUTION icon indicates potential damage to hardware or loss of data
if instructions are not followed.

syslog-ng PE Sending out messages stuck in syslog-ng disk queue files
Updated - 22 February 2022, 10:23
Version - 6 LTS

http://www.oneidentity.com/
http://www.oneidentity.com/legal/patents.aspx
http://www.oneidentity.com/legal

Contents

PO M

A. About disk queue fil@s ...
Normal and reliable queUe files

Size and truncation of qUEUE il

@NE IDENTITY syslog-ng PE 6 LTS Sending out messages stuck in syslog-ng disk

by Quest queue files

Problem

When you change the configuration of a syslog-ng PE host that uses disk-based buffering
(also called dis queue), syslog-ng PE may start new disk buffer files for the destinations
that you have changed. In such case, syslog-ng PE abandons the old disk queue files. If
there were unsent log messages in the disk queue files, these messages remain in the disk
queue files, and will not be sent to the destinations.

This document explains the steps required to find, examine, and flush the log messages
from such orphaned disk queue files.
Procedure 1. Recover log messages from orphaned disk queue files

Overview:

1. Identify the active queue files
2. Identify which queue files still hold valid data

3. Configure a separate syslog instance to send queue files to the processing application
Steps:
i

Identify the active queue files.

The syslog-ng PE application keeps track of active disk queue files, and the internal
state of its source drivers in the syslog-ng.persist file. While running, syslog-ng PE
uses the mmap () system call to map the file's contents into physical memory. This
means that the actual contents of the file may not always contain the up-to-date
internal state of syslog-ng PE. For this reason, while you are working with the
syslog-ng.persist file, stop syslog-ng PE.

The following command lists the destinations and the related queue files.

/opt/syslog-ng/bin/persist-tool dump /opt/syslog-ng/var/syslog-
ng.persist | fgrep gfile

The output if this command is similar to the following:

afsocket _dd _gfile(stream,127.0.0.1:601) = { "queue_file": "\/\/syslog-ng-
00001.rqgf" }

Identify which queue files hold valid data.

To identify which queue files hold unsent data, use the following two commands for
your disk queue files (the example shows a single file called sys1og-ng-00000.rgf):

(GNE IDENTITY Syslog-ng PE 61T

Quest Sending out messages stuck in syslog-ng disk queue files

/opt/syslog-ng/bin/dqtool info syslog-ng-00000.rqf
/opt/syslog-ng/bin/dqtool cat syslog-ng-00000.rqf

root@server:/# /opt/syslog-ng/bin/dqtool info syslog-ng-00000.rqf
Reliable disk-buffer state loaded; filename='syslog-ng-00000.rqf', queue_
length="'138"', size='71962"

root@server:/# /opt/syslog-ng/bin/dqtool cat syslog-ng-00000.rqf | tail -n
3

Reliable disk-buffer state loaded; filename='syslog-ng-00000.rqf', queue_
length="138", size='71962'

Feb 20 17:22:14.776 server -- MARK --

Feb 20 17:42:14.777 server -- MARK --

Feb 20 18:02:14.778 server -- MARK --

root@server:/#

To identify queue files with valid data in them, use the following command. This
command prints the names of disk queue files which hold valid data.

for q in *.rqf; do /opt/syslog-ng/bin/dqtool info ${q} 2>&1 | fgrep
queue_length; done | awk -F \' '{ if ($4 > @) { print $2; } }'

Verify that the contents of the queue files are indeed valid. If you want to
forward the messages to an application, verify that the receiving application will
be able to parse them.

3.
Configure a separate instance of syslog-ng PE to send queue files to the
processing application.
In order to process the queue files that contain valid data, you must configure and
temporarily run a separate syslog-ng PE instance.
The configuration must include a source that will definitely not receive any logs,
connected to a network destination that points to the desired IP address and port
number, and has disk queue configured. When you start syslog-ng PE with this
configuration, it will generate a persist file that you can modify later on.
a. Create an appropriate configuration for your environment that matches the
above criteria. For example:

@version:6.0

@include "scl.conf"

#

sample configuration file for syslog-ng on AIX

users should customize to fit their needs

#

options {

threaded(yes);
@NE IDENTITY syslog-ng PE 6 LTS

Quest Sending out messages stuck in syslog-ng disk queue files

keep-hostname(yes);
keep-timestamp(yes);

15

source nofile {
file (
"/no_such_file_or.dir"
)
s

destination extra_listener {
syslog(
"127.0.0.1"
port(10641)
disk-buffer(
disk-buf-size(1048576)

reliable(yes)
)

)s
s
log {

source(nofile);

destination(extra_listener);
s

b. Start syslog-ng PE briefly from the command-line to generate a
persist file.

Make sure to use the configuration file you created in the previous step using
the --cfgrile option, and to use a non-existing persist file (to avoid
overwriting the persist file of your regular syslog-ng PE instance). The following
command uses the /root/syslog/syslog-ng.conf configuration file, and the
/root/syslog/syslog-ng.persist persist file.

root@server:~/syslog# /opt/syslog-ng/sbin/syslog-ng --foreground --
enable-core --no-caps --cfgfile /root/syslog/syslog-ng.conf --pidfile
/root/syslog/syslog-ng.sender.pid --control /root/syslog/syslog-
ng.sender.ctl --persist-file /root/syslog/syslog-ng.persist --qdisk-
dir /root/syslog/

After syslog-ng PE starts up and generates the persist file, press CTRL+C to
stop syslog-ng PE.

c. Edit the persist file to include the location of the orphaned disk
queue files.

Use the following /opt/syslog-ng/bin/persist-tool dump
/root/syslog/syslog-ng.persist command to display the contents of the
persist file generated in the previous step, for example:

(GNE IDENTITY Syslog-ng PE 61T

Quest Sending out messages stuck in syslog-ng disk queue files

root@server:~/syslog# /opt/syslog-ng/bin/persist-tool dump
/root/syslog/syslog-ng.persist
afsocket_dd_gfile(stream,127.0.0.1:10641) = { "queue _file":
"\/root\/syslog\/\/syslog-ng-00000.rqf" }

affile_sd_curpos(/no_such_file or.dir) = { "version": 1, "big
endian": false, "raw_buffer_leftover_size": @, "buffer_pos": 0,
"pending_buffer_end": 0, "buffer_size": @, "buffer_cached_eol": 0,
"pending_buffer_pos": 0, "raw_stream_pos": 0, "pending_raw_stream_
pos": @, "raw_buffer_size": @, "pending raw_buffer_size": @, "file_
size": @, "file_inode": @, "run_id": 1 }

run_id = { "value": "01 00 00 00" }
Issue the following commands to modify the persist file.

/opt/syslog-ng/bin/persist-tool dump /root/syslog/syslog-ng.persist >
persist.dump

sed -i -e 's:syslog-ng-00000:full:' -e '/“~run_id/ d' -e '/~$/ d'
persist.dump

rm syslog-ng.persist

/opt/syslog-ng/bin/persist-tool add persist.dump -o .

As a result, references to the syslog-ng-00000. rgf disk queue file should
change to full.rqgf. Display the contents of the persist file again to verify this.

root@server:~/syslog# /opt/syslog-ng/bin/persist-tool dump
/root/syslog/syslog-ng.persist
affile_sd_curpos(/no_such_file or.dir) = { "version": 1, "big
endian": false, "raw_buffer_leftover_size": @, "buffer_pos": 0,
"pending_buffer_end": @, "buffer_size": @, "buffer_cached eol": 0,
"pending_buffer_pos": 0, "raw_stream_pos": @, "pending_raw_stream_
pos": @, "raw_buffer_size": @, "pending_raw_buffer_size": 0, "file_
size": @, "file_inode": @, "run_id": 1 }

afsocket_dd_gfile(stream,127.0.0.1:10641) = { "queue_file":
"\/root\/syslog\/\/full.rqgqf" }

d. Rename the queue file to the filename set in the persist file
previously.

root@server:~/syslog# 1ls -1 *.rqf
-PW------- 1 root root 4096 febr 21 23:57 full.rgf

@NE IDENTITY syslog-ng PE6LTS |

Quest Sending out messages stuck in syslog-ng disk queue files

-PW------- 1 root root 78506 febr 22 20:45 syslog-ng-00000.rqf
root@server:~/syslog# cp /syslog-ng-00000.rqf full.rqf
root@server:~/syslog# 1ls -1 *.rqf

-PW------- 1 root root 78506 febr 22 20:45 full.rqgf

-PW------- 1 root root 78506 febr 22 20:45 syslog-ng-00000.rqf

e. Start the new syslog-ng instance.

Start the new syslog-ng instance, and let it run until size of the queue file
decreases to 4 KB. After that, press Ctrl+C to stop the syslog-ng instance.

/opt/syslog-ng/sbin/syslog-ng --foreground --enable-core --no-caps --
cfgfile /root/syslog/syslog-ng.conf --pidfile /root/syslog/syslog-
ng.sender.pid --control /root/syslog/syslog-ng.sender.ctl --persist-
file /root/syslog/syslog-ng.persist --qdisk-dir /root/syslog/

~C

root@server:~/syslog# 1s -1 *.rqf

-PW------- 1 root root 4096 febr 22 22:19 full.rgf

-PW------- 1 root root 78506 febr 22 20:45 syslog-ng-00000.rqf

root@server:~/syslog#

If you wish to verify or debug syslog-ng PE sending the queue file contents, use
the additional --verbose --debug --stderr options, for example:

/opt/syslog-ng/sbin/syslog-ng --foreground --verbose --debug --stderr
--enable-core --no-caps --cfgfile /root/syslog/syslog-ng.conf --
pidfile /root/syslog/syslog-ng.sender.pid --control
/root/syslog/syslog-ng.sender.ctl --persist-file /root/syslog/syslog-
ng.persist --qdisk-dir /root/syslog/

f. Repeat these steps for the other left-over queue files.

After you have processed all left-over queue files this way, all the missing
recoverable logs should have found their way to their intended destinations.

(GNE IDENTITY Syslog-ng PE 61T

Quest Sending out messages stuck in syslog-ng disk queue files

A. About disk queue files

Normal and reliable queue files

The key difference between disk queue files that employ the reliable (yes) option and not
is the strategy they employ. Reliable disk queues guarantee that all the messages passing
through them are written to disk first, and removed from the queue only after the
destination has confirmed that the message has been successfully received. This prevents
message loss, for example, due to syslog-ng PE crashes if the the source side of the
destination server uses RLTP™. Of course, this introduces a significant performance
penalty as well. Reliable disk queues employ an in-memory cache buffer, the content of
which is also written to the disk, and which is intended to speed up the process of reading
back data from the queue.

Normal disk queues work in a different way: they employ an in-memory output buffer (set
in gout-size()) and an in-memory overflow queue (set in mem-buf-length ()). The disk
buffer file itself is only used if the in-memory output buffer (set in qout-size()) is filled up
completely. This approach has better performance (because of less disk IO operations), but
also carries the risk of losing a maximum of qout-size () plus mem-buf-length () humber
of messages in case of an unexpected power failure or application crash.

Size and truncation of queue files

Disk queue files tend to grow. Each may take up to disk-burf-size () bytes on the disk.
Due to the nature of reliable queue files, all the messages traversing the queue are written
to disk, constantly increasing the size of the queue file. Truncation only occurs if the read
and write heads of the queue reach the same position. Given that new messages arrive all
the time, at least a small number of messages will almost always be stored in the queue file
at all times. As a result, the queue file is not truncated automatically, but grows until it
reaches the maximal configured size, after which the write head will wrap around, later
followed by the read head.

In case of normal disk queue files, growth in size is not so apparent, as the disk-based
queue file is only used if the in-memory overflow buffer fills up. Once the destination
sends messages faster than the incoming message rate, the queue will start to empty, and
when the read and write heads of the queue reach the same position, the queue files are
finally truncated.

(GNE IDENTITY Syslog-ng PE 61T

by Quest Sending out messages stuck in syslog-ng disk queue files

Note that if a queue file becomes corrupt, syslog-ng PE starts a new one. This might lead to
the queue files consuming more space in total than their maximal configured size and the
number of configured queue files multiplied together.

(GNE IDENTITY Sysiog-ng PE 6 LTS

by Quest Sending out messages stuck in syslog-ng disk queue files

	Problem
	Appendix: A. About disk queue filesNormal and reliable queue filesThe key difference between disk queue files that employ the reliable(yes) option and not is the strategy they employ. Reliable disk queues guarantee that all the messages passing through them are written to disk first, and removed from the queue only after the destination has confirmed that the message has been successfully received. This prevents message loss, for example, due to syslog-ng PE crashes if the the source side of the destination server uses RLTP™. Of course, this introduces a significant performance penalty as well. Reliable disk queues employ an in-memory cache buffer, the content of which is also written to the disk, and which is intended to speed up the process of reading back data from the queue.Normal disk queues work in a different way: they employ an in-memory output buffer (set in qout-size()) and an in-memory overflow queue (set in mem-buf-length()). The disk buffer file itself is only used if the in-memory output buffer (set in qout-size()) is filled up completely. This approach has better performance (because of less disk IO operations), but also carries the risk of losing a maximum of qout-size() plus mem-buf-length() number of messages in case of an unexpected power failure or application crash.Size and truncation of queue filesDisk queue files tend to grow. Each may take up to disk-buf-size() bytes on the disk. Due to the nature of reliable queue files, all the messages traversing the queue are written to disk, constantly increasing the size of the queue file. Truncation only occurs if the read and write heads of the queue reach the same position. Given that new messages arrive all the time, at least a small number of messages will almost always be stored in the queue file at all times. As a result, the queue file is not truncated automatically, but grows until it reaches the maximal configured size, after which the write head will wrap around, later followed by the read head.In case of normal disk queue files, growth in size is not so apparent, as the disk-based queue file is only used if the in-memory overflow buffer fills up. Once the destination sends messages faster than the incoming message rate, the queue will start to empty, and when the read and write heads of the queue reach the same position, the queue files are finally truncated.Note that if a queue file becomes corrupt, syslog-ng PE starts a new one. This might lead to the queue files consuming more space in total than their maximal configured size and the number of configured queue files multiplied together.
	Normal and reliable queue files
	Size and truncation of queue files

