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Problem

When you change the configuration of a syslog-ng PE host that uses disk-based buffering
(also called dis queue), syslog-ng PE may start new disk buffer files for the destinations
that you have changed. In such case, syslog-ng PE abandons the old disk queue files. If
there were unsent log messages in the disk queue files, these messages remain in the disk
queue files, and will not be sent to the destinations.

This document explains the steps required to find, examine, and flush the log messages
from such orphaned disk queue files.
Procedure 1. Recover log messages from orphaned disk queue files

Overview:

1. Identify the active queue files
2. Identify which queue files still hold valid data

3. Configure a separate syslog instance to send queue files to the processing application
Steps:
i

Identify the active queue files.

The syslog-ng PE application keeps track of active disk queue files, and the internal
state of its source drivers in the syslog-ng.persist file. While running, syslog-ng PE
uses the mmap () system call to map the file's contents into physical memory. This
means that the actual contents of the file may not always contain the up-to-date
internal state of syslog-ng PE. For this reason, while you are working with the
syslog-ng.persist file, stop syslog-ng PE.

The following command lists the destinations and the related queue files.

# /opt/syslog-ng/bin/persist-tool dump /opt/syslog-ng/var/syslog-
ng.persist | fgrep gfile

The output if this command is similar to the following:

afsocket _dd _gfile(stream,127.0.0.1:601) = { "queue_file": "\/\/syslog-ng-
00001.rqgf" }

Identify which queue files hold valid data.

To identify which queue files hold unsent data, use the following two commands for
your disk queue files (the example shows a single file called sys1og-ng-00000.rgf):
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# /opt/syslog-ng/bin/dqtool info syslog-ng-00000.rqf
# /opt/syslog-ng/bin/dqtool cat syslog-ng-00000.rqf

root@server:/# /opt/syslog-ng/bin/dqtool info syslog-ng-00000.rqf
Reliable disk-buffer state loaded; filename='syslog-ng-00000.rqf', queue_
length="'138"', size='71962"

root@server:/# /opt/syslog-ng/bin/dqtool cat syslog-ng-00000.rqf | tail -n
3

Reliable disk-buffer state loaded; filename='syslog-ng-00000.rqf', queue_
length="138", size='71962'

Feb 20 17:22:14.776 server -- MARK --

Feb 20 17:42:14.777 server -- MARK --

Feb 20 18:02:14.778 server -- MARK --

root@server:/#

To identify queue files with valid data in them, use the following command. This
command prints the names of disk queue files which hold valid data.

# for q in *.rqf; do /opt/syslog-ng/bin/dqtool info ${q} 2>&1 | fgrep
queue_length; done | awk -F \' '{ if ($4 > @) { print $2; } }'

Verify that the contents of the queue files are indeed valid. If you want to
forward the messages to an application, verify that the receiving application will
be able to parse them.

3.
Configure a separate instance of syslog-ng PE to send queue files to the
processing application.
In order to process the queue files that contain valid data, you must configure and
temporarily run a separate syslog-ng PE instance.
The configuration must include a source that will definitely not receive any logs,
connected to a network destination that points to the desired IP address and port
number, and has disk queue configured. When you start syslog-ng PE with this
configuration, it will generate a persist file that you can modify later on.
a. Create an appropriate configuration for your environment that matches the
above criteria. For example:

@version:6.0

@include "scl.conf"

#

# sample configuration file for syslog-ng on AIX

# users should customize to fit their needs

#

options {

threaded(yes);
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keep-hostname(yes);
keep-timestamp(yes);

15

source nofile {
file (
"/no_such_file_or.dir"
)
s

destination extra_listener {
syslog(
"127.0.0.1"
port(10641)
disk-buffer(
disk-buf-size(1048576)

reliable(yes)
)

)s
s
log {

source(nofile);

destination(extra_listener);
s

b. Start syslog-ng PE briefly from the command-line to generate a
persist file.

Make sure to use the configuration file you created in the previous step using
the --cfgrile option, and to use a non-existing persist file (to avoid
overwriting the persist file of your regular syslog-ng PE instance). The following
command uses the /root/syslog/syslog-ng.conf configuration file, and the
/root/syslog/syslog-ng.persist persist file.

root@server:~/syslog# /opt/syslog-ng/sbin/syslog-ng --foreground --
enable-core --no-caps --cfgfile /root/syslog/syslog-ng.conf --pidfile
/root/syslog/syslog-ng.sender.pid --control /root/syslog/syslog-
ng.sender.ctl --persist-file /root/syslog/syslog-ng.persist --qdisk-
dir /root/syslog/

After syslog-ng PE starts up and generates the persist file, press CTRL+C to
stop syslog-ng PE.

c. Edit the persist file to include the location of the orphaned disk
queue files.

Use the following /opt/syslog-ng/bin/persist-tool dump
/root/syslog/syslog-ng.persist command to display the contents of the
persist file generated in the previous step, for example:
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root@server:~/syslog# /opt/syslog-ng/bin/persist-tool dump
/root/syslog/syslog-ng.persist
afsocket_dd_gfile(stream,127.0.0.1:10641) = { "queue _file":
"\/root\/syslog\/\/syslog-ng-00000.rqf" }

affile_sd_curpos(/no_such_file or.dir) = { "version": 1, "big
endian": false, "raw_buffer_leftover_size": @, "buffer_pos": 0,
"pending_buffer_end": 0, "buffer_size": @, "buffer_cached_eol": 0,
"pending_buffer_pos": 0, "raw_stream_pos": 0, "pending_raw_stream_
pos": @, "raw_buffer_size": @, "pending raw_buffer_size": @, "file_
size": @, "file_inode": @, "run_id": 1 }

run_id = { "value": "01 00 00 00" }
Issue the following commands to modify the persist file.

/opt/syslog-ng/bin/persist-tool dump /root/syslog/syslog-ng.persist >
persist.dump

sed -i -e 's:syslog-ng-00000:full:' -e '/“~run_id/ d' -e '/~$/ d'
persist.dump

rm syslog-ng.persist

/opt/syslog-ng/bin/persist-tool add persist.dump -o .

As a result, references to the syslog-ng-00000. rgf disk queue file should
change to full.rqgf. Display the contents of the persist file again to verify this.

root@server:~/syslog# /opt/syslog-ng/bin/persist-tool dump
/root/syslog/syslog-ng.persist
affile_sd_curpos(/no_such_file or.dir) = { "version": 1, "big
endian": false, "raw_buffer_leftover_size": @, "buffer_pos": 0,
"pending_buffer_end": @, "buffer_size": @, "buffer_cached eol": 0,
"pending_buffer_pos": 0, "raw_stream_pos": @, "pending_raw_stream_
pos": @, "raw_buffer_size": @, "pending_raw_buffer_size": 0, "file_
size": @, "file_inode": @, "run_id": 1 }

afsocket_dd_gfile(stream,127.0.0.1:10641) = { "queue_file":
"\/root\/syslog\/\/full.rqgqf" }

d. Rename the queue file to the filename set in the persist file
previously.

root@server:~/syslog# 1ls -1 *.rqf
-PW------- 1 root root 4096 febr 21 23:57 full.rgf
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-PW------- 1 root root 78506 febr 22 20:45 syslog-ng-00000.rqf
root@server:~/syslog# cp /syslog-ng-00000.rqf full.rqf
root@server:~/syslog# 1ls -1 *.rqf

-PW------- 1 root root 78506 febr 22 20:45 full.rqgf

-PW------- 1 root root 78506 febr 22 20:45 syslog-ng-00000.rqf

e. Start the new syslog-ng instance.

Start the new syslog-ng instance, and let it run until size of the queue file
decreases to 4 KB. After that, press Ctrl+C to stop the syslog-ng instance.

/opt/syslog-ng/sbin/syslog-ng --foreground --enable-core --no-caps --
cfgfile /root/syslog/syslog-ng.conf --pidfile /root/syslog/syslog-
ng.sender.pid --control /root/syslog/syslog-ng.sender.ctl --persist-
file /root/syslog/syslog-ng.persist --qdisk-dir /root/syslog/

~C

root@server:~/syslog# 1s -1 *.rqf

-PW------- 1 root root 4096 febr 22 22:19 full.rgf

-PW------- 1 root root 78506 febr 22 20:45 syslog-ng-00000.rqf

root@server:~/syslog#

If you wish to verify or debug syslog-ng PE sending the queue file contents, use
the additional --verbose --debug --stderr options, for example:

/opt/syslog-ng/sbin/syslog-ng --foreground --verbose --debug --stderr
--enable-core --no-caps --cfgfile /root/syslog/syslog-ng.conf --
pidfile /root/syslog/syslog-ng.sender.pid --control
/root/syslog/syslog-ng.sender.ctl --persist-file /root/syslog/syslog-
ng.persist --qdisk-dir /root/syslog/

f. Repeat these steps for the other left-over queue files.

After you have processed all left-over queue files this way, all the missing
recoverable logs should have found their way to their intended destinations.
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A. About disk queue files

Normal and reliable queue files

The key difference between disk queue files that employ the reliable (yes) option and not
is the strategy they employ. Reliable disk queues guarantee that all the messages passing
through them are written to disk first, and removed from the queue only after the
destination has confirmed that the message has been successfully received. This prevents
message loss, for example, due to syslog-ng PE crashes if the the source side of the
destination server uses RLTP™. Of course, this introduces a significant performance
penalty as well. Reliable disk queues employ an in-memory cache buffer, the content of
which is also written to the disk, and which is intended to speed up the process of reading
back data from the queue.

Normal disk queues work in a different way: they employ an in-memory output buffer (set
in gout-size()) and an in-memory overflow queue (set in mem-buf-length ()). The disk
buffer file itself is only used if the in-memory output buffer (set in qout-size()) is filled up
completely. This approach has better performance (because of less disk IO operations), but
also carries the risk of losing a maximum of qout-size () plus mem-buf-length () humber
of messages in case of an unexpected power failure or application crash.

Size and truncation of queue files

Disk queue files tend to grow. Each may take up to disk-burf-size () bytes on the disk.
Due to the nature of reliable queue files, all the messages traversing the queue are written
to disk, constantly increasing the size of the queue file. Truncation only occurs if the read
and write heads of the queue reach the same position. Given that new messages arrive all
the time, at least a small number of messages will almost always be stored in the queue file
at all times. As a result, the queue file is not truncated automatically, but grows until it
reaches the maximal configured size, after which the write head will wrap around, later
followed by the read head.

In case of normal disk queue files, growth in size is not so apparent, as the disk-based
queue file is only used if the in-memory overflow buffer fills up. Once the destination
sends messages faster than the incoming message rate, the queue will start to empty, and
when the read and write heads of the queue reach the same position, the queue files are
finally truncated.
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Note that if a queue file becomes corrupt, syslog-ng PE starts a new one. This might lead to
the queue files consuming more space in total than their maximal configured size and the
number of configured queue files multiplied together.
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