
One Identity Manager 9.1.1

API Development Guide

Copyright 2023 One Identity LLC.

ALL RIGHTS RESERVED.

This guide contains proprietary information protected by copyright. The software described in this
guide is furnished under a software license or nondisclosure agreement. This software may be used
or copied only in accordance with the terms of the applicable agreement. No part of this guide may
be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying and recording for any purpose other than the purchaser’s personal use without the
written permission of One Identity LLC .
The information in this document is provided in connection with One Identity products. No license,
express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of One Identity LLC products. EXCEPT AS SET FORTH IN THE
TERMS AND CONDITIONS AS SPECIFIED IN THE LICENSE AGREEMENT FOR THIS PRODUCT,
ONE IDENTITY ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR
STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. IN NO EVENT SHALL ONE IDENTITY BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT
LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF
ONE IDENTITY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. One Identity makes
no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and product descriptions at any
time without notice. One Identity does not make any commitment to update the information
contained in this document.
If you have any questions regarding your potential use of this material, contact:

One Identity LLC.
Attn: LEGAL Dept
4 Polaris Way
Aliso Viejo, CA 92656

Refer to our Web site (http://www.OneIdentity.com) for regional and international office
information.

Patents

One Identity is proud of our advanced technology. Patents and pending patents may apply to this
product. For the most current information about applicable patents for this product, please visit our
website at http://www.OneIdentity.com/legal/patents.aspx.

Trademarks

One Identity and the One Identity logo are trademarks and registered trademarks of One Identity
LLC. in the U.S.A. and other countries. For a complete list of One Identity trademarks, please visit
our website at www.OneIdentity.com/legal/trademark-information.aspx. All other trademarks are
the property of their respective owners.

Legend

WARNING: A WARNING icon highlights a potential risk of bodily injury or property
damage, for which industry-standard safety precautions are advised. This icon is
often associated with electrical hazards related to hardware.

CAUTION: A CAUTION icon indicates potential damage to hardware or loss of data
if instructions are not followed.

One Identity Manager API Development Guide
Updated - 28 March 2023, 21:47
For the most recent documents and product information, see Online product documentation.

http://www.oneidentity.com/
http://www.oneidentity.com/legal/patents.aspx
http://www.oneidentity.com/legal/trademark-information.aspx
https://support.oneidentity.com/identity-manager/technical-documents/

Contents

About this guide 5

Basic principles of API development 6

API Server basics 6

General information about the API Server 7

Calling the API Server web interface 7

Encryption 7

General notes on programming your own API methods 7

Guidelines and conventions 8

Handling of API Server queries 8

Authentication 10

Configuring authentication 10

Authentication (primary) 11

Logging out 11

Session status and security tokens 12

Querying session status 12

API methods 12

Entity methods 12

User-defined methods 18

SQL methods 18

HTTP methods 19

Date formats 19

Parameter formats 19

Path parameters 19

Query parameters 20

Response formats 20

Response codes 21

Avoiding deadlocks 21

Examples and help – Software Development Kit 22

Implementing your own APIs 23

Managing API plug-ins 23

One Identity Manager 9.1.1 API Development Guide
3

Creating API plug-ins 24

Editing API plug-ins 25

Compiling TypeScript API clients 25

Adding APIs to One Identity API projects 26

Creating API projects 28

Adding APIs to your own API projects 28

ImxClient command line program 29

Starting the ImxClient command line program 29

ImxClient command overview 29

check-translations 30

compile-api 31

compile-app 32

connect 33

edit-config 33

fetch-files 34

get-apistate 35

get-filestate 36

help 37

inject-package 37

install-apiserver 38

push-files 39

repl 40

run-apiserver 40

start-update 42

workspace-info 42

About us 44

Contacting us 44

Technical support resources 44

Index 45

One Identity Manager 9.1.1 API Development Guide
4

About this guide

This guide explains the API Server's functionality, how you program API calls, and add your
own API methods toOne Identity Manager.

Available documentation

The online version of One Identity Manager documentation is available in the Support
portal under Technical Documentation. You will find videos with additional information at
www.YouTube.com/OneIdentity.

One Identity Manager 9.1.1 API Development Guide

About this guide
5

https://support.oneidentity.com/identity-manager/technical-documents
http://www.youtube.com/OneIdentity

1

Basic principles of API development

HTML applications use the API Client to communicate with the One Identity Manager API.
The API Client controls all network access on the API Server.

The most important components for developing your own APIs are:

l API projects: An API project represents the actual application and provides API
methods. Various API projects are supplied with One Identity Manager, for example
the Web Portal (portal).

l API plug-ins: An API plug-in serves as a container for custom extensions. With an API
plug-in, you can deploy your own API projects and/or add more API methods to
existing API projects.

l API Provider: An API provider is a single class in a DLL file that declares API methods.

Detailed information about this topic

l API Server basics on page 6
l Guidelines and conventions on page 8

API Server basics

In this chapter you will find basic information about the API Servers architecture, which is
important for custom programming with your own API methods.

Detailed information about this topic

l General information about the API Server on page 7
l Calling the API Server web interface on page 7
l Encryption on page 7
l General notes on programming your own API methods on page 7

One Identity Manager 9.1.1 API Development Guide

Basic principles of API development
6

General information about the API Server

l The API Server deploys the API.
l The API Server is implemented using the Owin Platform (see http://owin.org/).
l URLs are case sensitive.

Calling the API Server web interface

From the API Server's web interface you can:

l Configure the API Server.
l Call the swagger documentation for your API.
l Open the Operations Support Web Portal.
l Call all installed web applications.

To call the API Server web interface

l In a web browser, open the webpage (URL) of your API Server.

Encryption

The API Server stores data securely encrypted on the client.

The certificate is configured when the API server is installed on the IIS. For more
information on installing the API Servers, see the One Identity Manager Installation Guide.

For more information about configuring encryption, see the One Identity Manager Web
Application Configuration Guide.

General notes on programming your own
API methods

l Because the API Server is stateless, save the API methods without a client
specific state.
For example, you cannot, therefore, define global variables or store session
object status data. When the API Server processes are restarted, these values
are not restored.

l After enabling routes, you cannot change the definition objects anymore.

One Identity Manager 9.1.1 API Development Guide

Basic principles of API development
7

http://owin.org/

l Use asynchronous code for defining API methods. This supports more efficient usage
of server resources and improves performance of the system under load. The
methods of the API and the underlying object model convert this asynchronousity
using the Task-based Asynchronous Pattern (TAP). For more information about TAP,
see https://docs.microsoft.com/de-de/dotnet/standard/asynchronous-
programming-patterns/task-based-asynchronous-pattern-tap.

l Do not use the HttpContext.Current method when you define API methods.
You can query the current HTTP requirements with the
QBM.CompositionApi.OwinRequestScopeContext.Context.Current static
method.

l If you define API methods that modify data, do NOT use the GETmethod.

Guidelines and conventions

In this chapter, you will find general policies and conventions, which you must take into
account when you create an API.

Detailed information about this topic

l Handling of API Server queries on page 8
l Authentication on page 10
l Session status and security tokens on page 12
l API methods on page 12
l HTTP methods on page 19
l Date formats on page 19
l Parameter formats on page 19
l Response formats on page 20
l Response codes on page 21
l Entity methods on page 12
l Avoiding deadlocks on page 21

Handling of API Server queries

In this section, you will find information about handling queries that are sent to the
API Server.

One Identity Manager 9.1.1 API Development Guide

Basic principles of API development
8

https://docs.microsoft.com/de-de/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
https://docs.microsoft.com/de-de/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap

Authentication

When a query is sent to the API Server, there is a test to ascertain the success of the
primary and, possibly, secondary login in the session for the current project (see
Authentication on page 10).

NOTE: This test is not done if the API method used by the query is marked as
AllowUnauthenticated.

The imx-session-<API project name> cookie is evaluated to allocate the current
session.

If a cookie is passed that cannot be associated with an active session in the current
process, the security token in the cookie is used to set up a new session (see Session status
and security tokens on page 12).

If there is no primary login, the API Server tries to establish a database connection through
one of the enabled single sign-on authentication modules.

If login cannot be carried out, the process is canceled and the HTTP error code 500 is
passed to the client (see Response codes on page 21).

Authorizing method access

The API Server checks whether the currently logged in user is authorized to run the
method. If the user does not have the required permissions, the process is canceled and
the HTTP error code 500 is passed to the client (see Response codes on page 21).

Validating the query

The API Server calls the validators stored with the API method one by one. If one fails, the
process is canceled and the HTTP error code 400 is passed to the client (see Response
codes on page 21).

Processing queries (for entity methods)

l GET (loads an entity)
l Determines the WHERE clause with internal and external filters
l Loads data from the database
l Augments an entity with calculated columns

l An entity in delayed-logic mode can be changed with a POST query or deleted with a
DELETE query. An entity in this mode is stateless and does not take up any resources
on the server after it has been processed.
Supported HTTP methods:

l GET (reads an entity)
l POST (changes an entity)
l DELETE (deletes an entity)

l An interactive entity must be created once with a PUT query and after that they
obtain their own ID. Use the ID in subsequent queries (POST or DELETE).

One Identity Manager 9.1.1 API Development Guide

Basic principles of API development
9

Supported HTTP methods:
l GET (loads an entity)
l PUT (creates an interactive entity)
l POST (changes an interactive entity)
l DELETE (deletes an interactive entity)

Authentication

User authentication is carried out on the API Server for each API project.

Running an API method requires prior authentication on an API project. If the API method
is marked as AllowUnauthenticated, authentication is not required (you can find an
example in the SDK)

Authentication has two steps:

1. Required primary authentication: Default authentication through an
authentication module

2. Optional secondary authentication: Multi-factor authentication (by OneLogin)

For more information about configuring authentication, see the One Identity Manager Web
Application Configuration Guide.

Detailed information about this topic

l Authentication (primary) on page 11
l Logging out on page 11

Related topics

l Handling of API Server queries on page 8

Configuring authentication

You can specify how users authenticate themselves on your API. You configure
authentication in the API project.

To configure authentication

1. Edit your API project.

2. Create the SessionAuthDbConfig class and populate the following properties:

a. Product: Specify the application with the authentication module that you want
to use (for example theWebDesigner or theManager),

One Identity Manager 9.1.1 API Development Guide

Basic principles of API development
10

b. SsoAuthentifiers: Specify the single sign-on authentication modules to use.

c. ExcludedAuthentifiers: Specify the authentication modules not to use.

Authentication (primary)

You can use the imx/login/<API project name> API method for primary authentication
on the API project.

To do this, use the POST HTTP method to send a query containing the following:

{ "Module": "RoleBasedPerson", "User": "<user name>", "Password": "<password>" }

TIP: See the SDK for examples.

Security mechanisms

The API Server uses a security mechanism to prevent cross-site request forgery (XSRF)
attacks. This randomly generates a token (XSRF-TOKEN) and sends it to the client in a
cookie at login. The client must then transmit the value of this token in an HTTP header (X-
XSRF-TOKEN) in each request sent to the server. If this header is missing, the request
closes with error code 400.

NOTE: If an API request breaks off with an error and indicates an incorrect CSRF protec-
tion cookie, check if your browser accepts the cookies sent by the browser.

TIP: You can change the name and path of the cookie and the name of the HTTP
header in the Administration Portal. To do this, use the Name of the cookie contain-
ing the CSRF protection token issued by the server (XsrfPro-
tectionCookieName) and Path for the CSRF protection cookie
(XsrfProtectionCookiePath) configuration keys.

You can also disable CSRF protection in the administration portal (Globally disable
CSRF protection tokens (XsrfProtectionDisabled) configuration key). One Identity
does not recommend doing this.

For more information about editing configuration keys, see the One Identity Manager
Web Application Configuration Guide.

Logging out

You can use the imx/logout/<API project name> API method to log out of the
API project.

To do this, use the POST HTTP method to send a query without content.

One Identity Manager 9.1.1 API Development Guide

Basic principles of API development
11

Session status and security tokens

The status a session is saved in a cookie. This cookie contains an encrypted security token
which is used to restore a login to the API Server if the API Server was restarted in the
mean time. The security token is cryptographically signed by the certificate selected on
installation.

NOTE: If the API Server's current user restarts the browser, the cookie and its session
information are reset.

Related topics

l Querying session status on page 12

Querying session status

You can use the imx/sessions/<API project name> API method to query the status of
the session. The response contains the following information:

l Permitted authentication module and associated parameters of the respective
API project.

l Type of secondary login

API methods

You can define the following types of API methods.

l Entity methods
l User-defined methods
l SQL-Methoden

Detailed information about this topic

l Entity methods on page 12
l User-defined methods on page 18
l SQL methods on page 18

Entity methods

Entity methods work with small parts of the object model in order to read data from the
database or write data to the database. When you create an entity method, you only need
to enter the table and column name and, if required, a filter condition (WHERE clause).

One Identity Manager 9.1.1 API Development Guide

Basic principles of API development
12

Internal processing is handled by the API Server. The data schema for the input and output
also has a specific format.

For examples for the definition of entity methods, see the SDK under Sdk01_Basics\01-
BasicQueryMethod.cs.

Detailed information about this topic

l Limiting results on page 13
l Sort order on page 14
l Filtering on page 14
l Grouping on page 15
l Hierarchical data structure on page 16
l Additional query parameters on page 17
l Type-safe classes

Limiting results

NOTE: Entity-based methods normally work with a limit to avoid unintentionally loading
extremely large amounts of data.

The following query parameters help you to limit the amount of data that is returned by
obtaining multiple data sets from sequential responses:

Query
parameter

Default
value

Description

PageSize 20 Specifies the maximum number of data sets that can be
contained in the response.

If you only determine the total number and do not want to
obtains single data sets, use the value -1.

StartIndex 0 Specifies as from which data sets the results are returned in
the response.

This parameter is null-based (the first element is addressed
with the value 0).

Example

The following query returns 50 identities and starts with the 101st identity:

https://<Host-Name>/ApiServer/portal/person?PageSize=50&StartIndex=100

One Identity Manager 9.1.1 API Development Guide

Basic principles of API development
13

Sort order

Use the Orderby query parameter to sort the results returned in an response. This
parameter allows you to sort the column names of the underlying database table.

Examples

The following query returns identities sorted by first name in ascending order:

https://<Host-Name>/ApiServer/portal/person?OrderBy=FirstName

The following query returns identities sorted by first name in descending order
:https://<host name>/ApiServer/portal/person?OrderBy=FirstName%20DESC

Filtering

Use the filter query parameter to filter the results returned in an response. A filter like this
consists of a JSON formatted string that must contain the following:

l ColumnName: Name of the column used to filter
l CompareOp: The operator for comparing the contents of the selected column with
the expected value

The following comparison operators are permitted:
l Equal: The results only include data sets with column data that matches the
comparison value.

l NotEqual: The results only include data sets with column data that does NOT
match the comparison value.

l LowerThan: The results only include data sets with column data less than the
comparison value.

l LowerOrEqual: The results only include data sets with column data less than
or equal to the comparison value.

l GreaterOrEqual: The results only include data sets with column data greater
than or equal to the comparison value.

l Like: Requires the use of a percent sign (%) as a placeholder. You can enter up
to two percent signs in this value. The results only include data sets with
column data that matches the comparison value pattern.

l NotLike: Requires the use of a percent sign (%) as a placeholder. You can
enter up to two percent signs in this value. The results only include data sets
with column data that does NOT match the comparison value pattern.

l BitsSet: The value is compared to the comparison value using the AND (&)
logical operator. The result must not be equal to 0.

l BitsNotSet: The value is compared to the comparison value using the AND (&)
logical operator. The result must be equal to 0.

One Identity Manager 9.1.1 API Development Guide

Basic principles of API development
14

l Value1: Comparison value for comparing the contents of the column
l Value 2: If this second comparison value is passed down, the value of CompareOp
is ignored and all the values that are greater or equal to Value1 and less or equal to
Value2 are determined.

Example

The following query returns all identities with the last name "User1":

https://<Host-Name>/ApiServer/portal/person/all?filter=[{ColumnName:
'LastName', CompareOp: 'Equal', Value1: 'User1'}]

Grouping

You can use the group path parameter to group the results returned in a response. You can
use the by query parameter to specify which attribute to use for grouping. Furthermore,
you can use thewithcount query parameter to specify (values: true or false) whether to
calculate the number of objects for each group. This may increase the runtime.

NOTE: The API method must support grouping (by using the EnableGrouping
parameter).

The result of the query contains a filter condition that you can pass to the URL
parameter as filter.

Example

The following queries determine the number of identities grouped by primary
location:

https://<host name>/ApiServer/portal/person/all/group?by=UID_
Locality&withcount=true

Response:

{
{

 "Display": "(No value: Primary location)",
 "Filters": [

{
 "ColumnName": "UID_Locality",
 "CompareOp": 0
 }
],
 "Count": 42
 },

{
 "Display": "Berlin",

One Identity Manager 9.1.1 API Development Guide

Basic principles of API development
15

 "Filters": [
{

 "ColumnName": "UID_Locality",
 "CompareOp": 0,
 "Value1": "c644f672-566b-4ab0-bac0-2ad07b6cf457"
 }
],
 "Count": 12
 }
}

Hierarchical data structure

Some data model tables are defined as hierarchical structures (Department for example).
Data from such tables is loaded from a specific hierarchy level.

You can use the parentKey query parameter of the parent object to specify the
hierarchy level.

Example

The following query determines the service categories directly below the Access
Lifecycle service category:

https://<host name>/ApiServer/portal/servicecategories?parentKey=QER-
f33d9f6ec3e744a3ab69a474c10f6ff4

The following query determines the service categories that do not have a parent
service category:

https://<Host-Name>/ApiServer/portal/servicecategories?parentKey=

The following query determines all service categories regardless of their hierarchy:

https://<Host-Name>/ApiServer/portal/servicecategories

You can use the noRecursive path parameter to specify whether the data is queried as a
flat list (values: true or false).

Example

https://<Host-Name>/ApiServer/portal/servicecategories?noRecursive=true

One Identity Manager 9.1.1 API Development Guide

Basic principles of API development
16

Additional query parameters

You can use thewithProperties query parameter to specify whether additional
information from specific tables columns are returned in the response.

NOTE: To enable table columns for these queries, set the Show in wizards option in the
column properties of the relevant columns in the Designer.

TIP: You can delimit the names of multiple columns with commas.

Example

The following query determines the number of all identities and also returns their
preferred name and title:

https://<host
name>/ApiServer/portal/person/all?withProperties=PreferredName,Title

Response:

{
 "TotalCount": 105950,
 "TableName": "Person",
 "Entities": [

{
 "Display": "100, User (USER1)",
 "LongDisplay": "100, User (USER1)",
 "Keys": [
 "bbf3f8e6-b719-4ec7-be35-cbd6383ef370"
],
 "Columns": {
 "DefaultEmailAddress": {
 "Value": "USER1@qs.ber",
 "IsReadOnly": true
 },
 "IdentityType": {
 "Value": "Primary",
 "IsReadOnly": true,
 "DisplayValue": "Primary identity"
 },
 "PreferredName": {
 "Value": "Johnny",
 "IsReadOnly": true
 },
 "Title": {
 "Value": "Dr.",
 "IsReadOnly": true
 },
 "XObjectKey": {
 "Value": "<Key><T>Person</T><P>bbf3f8e6-b719-4ec7-be35-
cbd6383ef370</P></Key>",
 "IsReadOnly": true
 }

One Identity Manager 9.1.1 API Development Guide

Basic principles of API development
17

 }
}

Type-safe classes

Type-safe classes allow you to use the database model in a type-safe way. This gives you
the following advantages:

l Compiling scripts checks whether the classes used are correct. This allows you to
detect spelling mistakes in table and column names early on.

l The development environment can offer auto-completion.
l The column's data type is detected, which prevents type conversion errors.

To use type-safe classes

1. Edit the corresponding API plug-in (see Editing API plug-ins on page 25) and proceed
as follows:

l Add a reference to the type-safe class library of the corresponding database
module (AOB.TypedWrappers.dll for example).

This makes the classes for this module available in the <module
name>.TypedWrappers namespace (AOB.TypedWrappers for example).

User-defined methods

User-defined methods are methods for which you fully define the processing, input, and
output data in code. This type therefore offers the greatest flexibility.

For examples for the user-defined methods, see the SDK under Sdk01_Basics\03-
CustomMethod.cs.

SQL methods

SQL methods are methods that provide data from a predefined SQL query through the API.
Create the parameters of a query as SQL parameters.

For examples for the definition of SQL methods, see the SDK under Sdk01_Basics\02-
BasicSqlMethod.cs.

Detailed information about this topic

l Entity methods on page 12

One Identity Manager 9.1.1 API Development Guide

Basic principles of API development
18

HTTP methods

HTTP requests can apply the following HTTP methods:

l GET: This method requests data from the application server.
l PUT: This method changes data on the application server.
l POST: This method creates data on the application server.
l DELETE: This method deletes data on the application server.

Date formats

Date values in requests to change or add objects must be specified in ISO 8601 format in
the client's local time zone.

Example

2016-03-19T13:09:08.123Z

Related topics

l Parameter formats on page 19

Parameter formats

HTTP requests use the following types of parameters:

l Path parameters
l Query parameters

Related topics

l Date formats on page 19

Path parameters

Path parameters extend the URL path. A forward slash is used as the delimiter.

If a query uses a path parameters, they are given in URI format.

One Identity Manager 9.1.1 API Development Guide

Basic principles of API development
19

Example

https://<host name>/ApiServer/imx/sessions/exampleparameter

Query parameters

Query parameter are appended to the URL with a question mark (?) or an ampersand (&).

The first query parameter must be prefixed by a question mark. In this case, you must use
the following format:

?parameter name=parameter value (for example, ?orderBy=LastName)

Subsequent query parameters must be prefixed by an ampersand. In this case, you must
use the following format:

¶meter name=parameter value (for example, ?sortOrder=ascending)

NOTE: Unknown query parameters are rejected by the server with error code 400. This
also affects query parameters with incorrect upper and lower case spelling.

Example

https://<host name>/AppServer/portal/person?orderBy=LastName

Response formats

Most API methods return results in JSON format (application/json). Furthermore, there is
support for results in CSV and PDF format as long as the result of the respective API
method is declared as exportable (with the AllowExport flag). Basically, an API method
can return results in any format compatible with HTTP.

To obtain results in CSV format

l In the query, set Accept header to text/csv.

To obtain results in PDF format

l In the query, set Accept header to applciation/pdf.

NOTE: To obtain results in PDF format, the RPS module must be installed on
your system.

Related topics

l Response codes on page 21

One Identity Manager 9.1.1 API Development Guide

Basic principles of API development
20

Response codes

Responses that are sent from the REST API use the following codes. If queries fail, an
explanatory error message is displayed.

Response
codes

Description

200 Query successful.

204 Query successful. Response has no content.

401 Access not authorized. The session must be authorized first.

404 The given resource could not be found.

405 The HTTP method used is not allowed for this query.

500 A server error occurred. The error message is sent with the response. On
the ground of security, a detailed error message is not included in the
response. For more information, see the application log file on the server.

Related topics

l Response formats on page 20

Avoiding deadlocks

API development includes a lot of asynchronous code with async/await constructs. To avoid
deadlocks, use the ConfigureAwait(false)method for every await keyword.

For more information, see https://blog.stephencleary.com/2012/07/dont-block-on-async-
code.html and https://devblogs.microsoft.com/dotnet/configureawait-faq/.

One Identity Manager 9.1.1 API Development Guide

Basic principles of API development
21

https://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
https://blog.stephencleary.com/2012/07/dont-block-on-async-code.html
https://devblogs.microsoft.com/dotnet/configureawait-faq/

2

Examples and help – Software
Development Kit

To make it easier for you to start developing your API, One Identity provides a Software
Development Kit (SDK) with lots of commented code example.

The SDK can be found on the installation medium in the directory
QBM\dvd\AddOn\ApiSamples.

One Identity Manager 9.1.1 API Development Guide

Examples and help – Software Development Kit
22

3

Implementing your own APIs

To implement your own APIs, you can create API plugins.

The API Server loads all DLLs matching the *.CompositionApi.Server.PlugIn.dll naming
scheme and deploys the API definitions contained therein.

To implement your own APIs, the following options are available:

l You can add an API to a One Identity API project (see Adding APIs to One Identity
API projects).

l You can create your own API project (Creating API projects on page 28).
l You can add an API to your own existing API projects (see Adding APIs to your own
API projects on page 28).

Detailed information about this topic

l Managing API plug-ins on page 23
l Adding APIs to One Identity API projects on page 26
l Creating API projects on page 28
l Adding APIs to your own API projects on page 28

Managing API plug-ins

With the help of API plug-ins, you can implement and use your own customized APIs and
API projects.

Prerequisites:

l You use a version management system (for example, Git).
l You use an Integrated Development Environment (IDE).

One Identity Manager 9.1.1 API Development Guide

Implementing your own APIs
23

Detailed information about this topic

l Creating API plug-ins
l Editing API plug-ins
l Compiling TypeScript API clients on page 25

Creating API plug-ins

To implement your own customized APIs and API projects, you can create API plug-ins.

To create an API plug-in

1. Start your IDE (such as Visual Studio).

2. Create a new .NET Framework 4.8 project with a name that complies with the format:
<project name>.CompositionApi.Server.Plugin.

3. Add references to the following DLL files from the One Identity Manager
installation directory:

l QBM.CompositionApi.Server.dll

l VI.Base.dll

l VI.DB.dll

4. Create the API code.

5. Compile the DLL file in your IDE.

6. Copy the DLL file to the bin\imxweb\custom subdirectory of your IIS installation.

7. Import the DLL file into your One Identity Manager database using the Software
Loader and assign it to the Business API Servermachine role. For more
information on importing files using the Software Loader, see the One Identity
Manager Operational Guide.

8. Copy the DLL file to the One Identity Manager install directory.

9. Import the DLL file into your One Identity Manager database using the Software
Loader and assign it to the Development and Testingmachine role. For more
information on importing files using the Software Loader, see the One Identity
Manager Operational Guide.

10. Restart the API Server and ensure that the <project
name>.CompositionApi.Server.Plugin file exists in the bin folder of the API Server
install directory.

11. Compile the appropriate TypeScript API client (see Compiling TypeScript API clients
on page 25).

One Identity Manager 9.1.1 API Development Guide

Implementing your own APIs
24

Editing API plug-ins

You can edit existing API plug-ins.

To edit an existing API plug-in

1. Start your IDE (such as Visual Studio).

2. Open an existing .NET Framework 4.8 project.

3. Edit the API code.

4. Compile the DLL file in your IDE.

5. Copy the DLL file to the bin\imxweb\custom subdirectory of your IIS installation.

6. Import the DLL file into your One Identity Manager database using the Software
Loader. For more information on importing files using the Software Loader, see the
One Identity Manager Operational Guide.

7. Copy the DLL file to the One Identity Manager install directory.

8. Import the DLL file into your One Identity Manager database using the Software
Loader. For more information on importing files using the Software Loader, see the
One Identity Manager Operational Guide.

9. Restart the API Server and ensure that the <project
name>.CompositionApi.Server.Plugin file exists in the bin folder of the API Server
install directory.

10. Compile the appropriate TypeScript API client (see Compiling TypeScript API clients
on page 25).

Compiling TypeScript API clients

After you create an API plugin, you need to compile a corresponding TypeScript API client.

To compile a TypeScript API client

1. Open a command line interface (for example, Windows Powershell).

2. In the command line program, go to the One Identity Manager installation directory.

3. Run the ImxClient's start-update command (see start-update on page 42).

Example

imxclient start-update

4. Run the ImxClient's compile-api command (see compile-api on page 31).

One Identity Manager 9.1.1 API Development Guide

Implementing your own APIs
25

Example

imxclient compile-api /copyapi imx-api-ccc.tgz /packagename imx-
api-ccc

The dialog to select the database connection is opened.

5. In the dialog, perform one of the following actions:
l to use an existing connection to the One Identity Manager database, select it in
the Select a database connectionmenu.

- OR -
l to create a new connection to the One Identity Manager database, click Add
new connection and enter a new connection.

6. Select the authentication method and, under Authentication method, enter the
login data for the database.

7. Click Log in.

8. Import the imx-api-ccc npm package into your TypeScript application.

TIP: (Optional) If you want to use another name for the imx-api-ccc packet, extend
the remove-local-packages.js by adding a line for the packet in the list. This
ensures that your package is not included in package locking and is always updated
from the local source.

Related topics

l compile-api on page 31

Adding APIs to One Identity API
projects

You can add your own APIs to One Identity API projects to add customized functionality to
One Identity HTML applications. To do this, create an API plug-in, define the API in it and
assign the corresponding One Identity API project to the API plug-in.

To add an API to a One Identity API project

1. Create or edit an API plug-in (see Creating API plug-ins on page 24 or Editing API
plug-ins on page 25) and proceed as follows:

a. Create a new class in the API plug-in project. This class represents the so-
called API provider.

One Identity Manager 9.1.1 API Development Guide

Implementing your own APIs
26

b. Declare the class with the interface that belongs to the API project you want to
add your API to.

The following One Identity API projects can be added:

HTML
applicati
on name

API
project
name

Interface to implement

Web
Portal

portal IApiProviderFor<QER.CompositionApi.Portal.Porta
lApiProject>

Opera-
tions
Support
Web
Portal

opsupport IApiProviderFor<QBM.CompositionApi.Operations.O
perationsApiProject>

Administr
ation
portal

admin IApiProviderFor<QBM.CompositionApi.AdminApi.Adm
inApiProject>

Password
Reset
Portal

passwordr-
eset

IApiProviderFor<QER.CompositionApi.Password.Pas
swordPortalApiProject>

Table 1: Supplied API project

c. Implement the Buildmethod of the IApiProviderFor interface with the
desired API functionality.

Example

1 public class ExampleApi : IApiPro-
viderFor<QER.CompositionApi.Portal.PortalApiProject>

2
3 {
4 public void Build(IApiBuilder builder)
5 {
6 builder.AddMethod(Method.Define("example")
7 .AllowUnauthenticated()
8 .HandleGet(qr => new DataObject { Message =

"Hello world!" }));
9 }

10 }

One Identity Manager 9.1.1 API Development Guide

Implementing your own APIs
27

Creating API projects

You can create your own API projects to add customized functionality to One Identity HTML
applications. To do this, copy the CustomApiProject sample API project (see Examples
and help – Software Development Kit on page 22), customize it as required, and assign it to
an API plug-in.

To create your own API project

1. Copy the CustomApiProject sample API project.

2. Make changes to the copied API project as required.

3. Create an API plug-in (see Creating API plug-ins on page 24) and proceed as follows:
l In the API plug-in project, create a new class that implements the
IApiProviderFor<name of your API project> interface. This class
represents the so-called API provider.

Adding APIs to your own API projects

You can add more APIs to your own API projects.

To add an API to your API project

1. Edit the API plug-in (see Editing API plug-ins on page 25) associated with the API
project and proceed as follows:

l In the API plug-in project, create a new class that implements the
IApiProviderFor<name of your API project> interface. This class
represents the so-called API provider.

One Identity Manager 9.1.1 API Development Guide

Implementing your own APIs
28

ImxClient command line program

You can use the ImxClient command line tool to run different functions for managing the
API Server and files on the command line.

Detailed information about this topic

l Starting the ImxClient command line program on page 29
l ImxClient command overview on page 29

Starting the ImxClient command line
program

You can start the ImxClient command line tool at any time using any command line
interface.

To start the lmxClient command line program

1. Open a command line interface (for example, Windows Powershell).

2. In the command line program, go to the One Identity Manager installation directory.

3. Run the ImxClient.exe application.

ImxClient command overview

The following chapters contain a list of all ImxClient commands that you can run.

Detailed information about this topic

l check-translations on page 30
l compile-api on page 31
l compile-app on page 32
l connect on page 33
l edit-config on page 33
l fetch-files on page 34
l get-apistate on page 35
l get-filestate on page 36

One Identity Manager 9.1.1 API Development Guide

ImxClient command line program
29

l help on page 37
l inject-package on page 37
l install-apiserver on page 38
l push-files on page 39
l repl on page 40
l run-apiserver on page 40
l start-update on page 42
l workspace-info on page 42

check-translations

Searches for captions (multilingual text) with missing translations in a particular folder and
its subfolders.

Parameters

Login parameter:

l /conn <database connection>: Specifies the database you want to connect to.
l /dialog <dialog authentication>: Specifies the dialog authentication.

Required parameters:

l /path <path to folder>: Specifies the path to the folder you want to check.

Optional parameter:

l /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

l off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

l show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

l fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

l /factory <target system>: Specifies the target system for the connection. Enter this
parameter if you want to establish a connection to the application server.
Example: QBM.AppServer.Client.ServiceClientFactory, QBM.AppServer.Client

Related topics

l ImxClient command line program on page 29
l ImxClient command overview on page 29

One Identity Manager 9.1.1 API Development Guide

ImxClient command line program
30

compile-api

Compiles the API and saves the result to the database.

Parameters

Login parameter:

l /conn <database connection>: Specifies the database you want to connect to.
l /dialog <dialog authentication>: Specifies the dialog authentication.

Optional parameter:

l /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

l off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

l show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

l fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

l /factory <target system>: Specifies the target system for the connection. Enter this
parameter if you want to establish a connection to the application server.
Example: QBM.AppServer.Client.ServiceClientFactory, QBM.AppServer.Client

l N: Prevents saving to the database.
l /modules <module1, module2>: Specifies which modules are included. If you do not
enter anything here, all modules are included. Enter the modules' names,
delimited by commas.

l /clientmodules <module1,module2,...>: Specifies the modules for which API code is
generated. If you do not enter anything here, API code is generated every module.
Enter the packages' names, delimited by commas.

l /packagename <name>: Specifies the API client package name. The default value
is imx-api.

l /copyapi <folder path>: Specifies where to copy the imx-api.tgz to.
l /nowarn <error1,error2,...>: Specifies which errors are ignored during compilation.
Enter the codes for the warnings, separated by commas.

l /warnaserror <error1,error2,...>: Specifies which warnings are displayed as errors
during compilation. Enter the codes for the warnings, separated by commas.

Related topics

l ImxClient command line program on page 29
l ImxClient command overview on page 29

One Identity Manager 9.1.1 API Development Guide

ImxClient command line program
31

compile-app

Runs HTML5 package compilation.

This command performs the following steps:

1. Runs the npm install command in the application folder.

2. Runs the npm run build command in the package folder.

3. Creates the output in subdirectory dist
.The output is stored as a zip file in the database.

Parameters

Login parameter:

l /conn <database connection>: Specifies the database you want to connect to.
l /dialog <dialog authentication>: Specifies the dialog authentication.

Optional parameter:

l /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

l off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

l show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

l fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

l /factory <target system>: Specifies the target system for the connection. Enter this
parameter if you want to establish a connection to the application server.
Example: QBM.AppServer.Client.ServiceClientFactory, QBM.AppServer.Client

l /workspace <path to working directory>: Specifies the working directory. This
folder contains the application to be compiled. This folder normally contains the
package.json file of the application. If you do not enter anything here, the current
directory is used.

l /app <application project name>: Specifies which application project to compile. If
you do not specify anything here, all application projects are compiled.

l -D: Runs debug compilation.
l -S: Skips running the npm install command in the application folder.
l -P: Prevents libraries being build in the application folder.
l /copyto <file path>: Saves the result of the compilation as ZIP files in a folder.
l /exclude <module name>: Omits packages of a module at compile time (for
example, AOB).

One Identity Manager 9.1.1 API Development Guide

ImxClient command line program
32

Related topics

l ImxClient command line program on page 29
l ImxClient command overview on page 29

connect

Establishes a database connection.

If a connection to a database has already been established, this is closed and a new
connection is then established.

Parameters

Login parameter:

l /conn <database connection>: Specifies the database you want to connect to.
l /dialog <dialog authentication>: Specifies the dialog authentication.

Optional parameter:

l /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

l off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

l show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

l fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

l /factory <target system>: Specifies the target system for the connection. Enter this
parameter if you want to establish a connection to the application server.
Example: QBM.AppServer.Client.ServiceClientFactory, QBM.AppServer.Client

Related topics

l ImxClient command line program on page 29
l ImxClient command overview on page 29

edit-config

Configures a trusted source key for an application.

One Identity Manager 9.1.1 API Development Guide

ImxClient command line program
33

Parameter

Login parameter:

l /conn <database connection>: Specifies the database you want to connect to.
l /dialog <dialog authentication>: Specifies the dialog authentication.

Required parameters:

l /path <path to folder>: Specifies which configuration file to load (for example, the
web.config file of a web application). The BaseURL setting of this configuration file is
used to determine the application to create the trusted source key for.

Optional parameter:

l /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

l off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

l show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

l fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

l -T: Configures a random generated trusted source key for the application.
l /trustedsourcekey <Trusted Source Key>: Configures the given trusted source key
for the application.

Related topics

l ImxClient command line program on page 29
l ImxClient command overview on page 29

fetch-files

Loads a specific machine role from the database and saves it in a local folder.

Parameters

Login parameter:

l /conn <database connection>: Specifies the database you want to connect to.
l /dialog <dialog authentication>: Specifies the dialog authentication.

Required parameters:

l /targets <target1;target2;...>: Specifies which machine roles you want to use.

Optional parameter:

One Identity Manager 9.1.1 API Development Guide

ImxClient command line program
34

l /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

l off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

l show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

l fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

l /factory <target system>: Specifies the target system for the connection. Enter this
parameter if you want to establish a connection to the application server.
Example: QBM.AppServer.Client.ServiceClientFactory, QBM.AppServer.Client

l /workspace <working directory path>: Specifies the working directory where
the files should be placed. If you do not enter anything here, the current
directory is used.

Related topics

l ImxClient command line program on page 29
l ImxClient command overview on page 29

get-apistate

Queries the compilation status of the API in the database.

Parameters

Login parameter:

l /conn <database connection>: Specifies the database you want to connect to.
l /dialog <dialog authentication>: Specifies the dialog authentication.

Optional parameter:

l /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

l off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

l show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

l fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

l /factory <target system>: Specifies the target system for the connection. Enter this
parameter if you want to establish a connection to the application server.

One Identity Manager 9.1.1 API Development Guide

ImxClient command line program
35

Example: QBM.AppServer.Client.ServiceClientFactory, QBM.AppServer.Client

l /branch <compilation branch ID>: Queries the compilation status of the API saved
under this compilation branch.

l /htmlapp <name of the HTML package>: Returns data for the specified HTML package.
l -D: Returns data for debug assemblies.
l -R: Returns data for release assemblies.

Related topics

l ImxClient command line program on page 29
l ImxClient command overview on page 29

get-filestate

Compares the local file structure with the file structure in the database.

Using the QBM | ImxClient | get-filestate | NewFilesExcludePatterns configuration
parameter, you can define which files are excluded from the synchronization. This prevents
excessive load during synchronization. The node_modules and imx-modules folders are
excluded from the synchronization by default.
You can adjust the configuration parameters in the Designer. Use the following formats
when defining the rules:
https://docs.microsoft.com/en-
us/dotnet/api/microsoft.extensions.filesystemglobbing.matcher
Use the | character to delimit multiple entries.

NOTE: This configuration parameter is generally only used to exclude new files from the
synchronization. Files that already exist in the database are not taken into account.

Parameters

Login parameter:

l /conn <database connection>: Specifies the database you want to connect to.
l /dialog <dialog authentication>: Specifies the dialog authentication.

Required parameters:

l /targets <target1;target2;...>: Specifies which machine roles you want to use.

Optional parameter:

l /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

l off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

One Identity Manager 9.1.1 API Development Guide

ImxClient command line program
36

https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.filesystemglobbing.matcher
https://docs.microsoft.com/en-us/dotnet/api/microsoft.extensions.filesystemglobbing.matcher

l show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

l fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

l /factory <target system>: Specifies the target system for the connection. Enter this
parameter if you want to establish a connection to the application server.
Example: QBM.AppServer.Client.ServiceClientFactory, QBM.AppServer.Client

l /workspace <directory path>: Specifies the working directory where the files you
want to match are located. If you do not enter anything here, the current
directory is used.

Related topics

l ImxClient command line program on page 29
l ImxClient command overview on page 29

help

Displays a list of available commands.

Parameters

To view help for a specific command, add the command as a parameter.

Example: help fetch-files

Related topics

l ImxClient command line program on page 29
l ImxClient command overview on page 29

inject-package

Installs packages from a tgz file into the node_modules directory of the working directory.

This is intended to be used only with local, dependency-free packages that do not require a
full NPM installation.

Parameter

Required parameters:

One Identity Manager 9.1.1 API Development Guide

ImxClient command line program
37

l /inject <package1>,<package2>,...: Specifies which packages to install. Enter the
packages' names, separated by commas.

Optional parameter:

l /workspace <working directory path>: Specifies the working directory where the
packages will be installed in the node_modules subdirectory. If you do not enter
anything here, the current directory is used.

Related topics

l ImxClient command line program on page 29
l ImxClient command overview on page 29

install-apiserver

Installs an API Server on the local Internet Information Services (IIS).

Parameters

Login parameter:

l /conn <database connection>: Specifies the database you want to connect to.
l /dialog <dialog authentication>: Specifies the dialog authentication.

Required parameters:

l /app <application name>: Specifies which name is used for the application (for
example, in the brower's titlebar).

l /sessioncert <certificate thumbprint>: Specifies which (installed) certificate is
used for creating and verifying session tokens.

TIP: For example, to obtain a certificate thumbprint, you can use theManage
computer certificatesWindows function and find the thumbprint through the
certificate's detailed information.

Optional parameter:

l /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

l off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

l show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

l fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

One Identity Manager 9.1.1 API Development Guide

ImxClient command line program
38

l -u: Allows insecure HTTP connections to the API Server website. By default, the API
Server website can only be opened over an encrypted connection.

l /site <site name>: Specifies the website on the IIS under which the web application
will be installed. If you do not enter anything, the website is found automatically
(normally Default website).

l /searchservice <URL>: Specifies the application server's URL that the search service
you want to use is hosted on.

NOTE: If you would like to use the full text search, then you must specify an
application server. You can enter the application server in the configuration file at
a later date.

Related topics

l ImxClient command line program on page 29
l ImxClient command overview on page 29

push-files

Saves files that you have changed locally back to the database.

Parameters

Login parameter:

l /conn <database connection>: Specifies the database you want to connect to.
l /dialog <dialog authentication>: Specifies the dialog authentication.

Required parameters:

l /targets <target1;target2;...>: Specifies which machine roles you want to use.

Optional parameter:

l /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

l off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

l show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

l fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

l /factory <target system>: Specifies the target system for the connection. Enter this
parameter if you want to establish a connection to the application server.
Example: QBM.AppServer.Client.ServiceClientFactory, QBM.AppServer.Client

One Identity Manager 9.1.1 API Development Guide

ImxClient command line program
39

l /workspace <folder path>: Specifies the working directory where the files are
located that have been modified and are now to be stored in the database. If you do
not enter anything here, the current directory is used.

l /tag <uid>: Specifies the change label to use to book the changes. For more
information about change labels, see the One Identity Manager Operational Guide.

l /add <file1;file2;...>: Specifies which new database files are added. Use
relative paths.

l /del <file1;file2;...>: Specifies which database files are deleted. Use
relative paths.

l -C: Prevents the saving of changed files and saves only new files, and deletes files
from the database.

Related topics

l ImxClient command line program on page 29
l ImxClient command overview on page 29

repl

Starts the ImxClient command line tool in REPL mode.

In this mode, the following actions are performed in an infinite loop:

l Read commands from stdin.
l Forward commands to the relevant plugin.
l Output the results of processing to stdout.

Related topics

l ImxClient command line program on page 29
l ImxClient command overview on page 29

run-apiserver

Starts or stops a self-hosted API Server.

This command requires a database connection.

Parameters

Login parameter:

One Identity Manager 9.1.1 API Development Guide

ImxClient command line program
40

l /conn <database connection>: Specifies the database you want to connect to.
l /dialog <dialog authentication>: Specifies the dialog authentication.

Optional parameter:

l /conndialog <option>: Specifies whether a login window is displayed for the
database connection. The following options are possible:

l off: The login window is not shown. If the database is not connected, an
attempt is made to establish a connection.

l show: The login window is shown (even is a database is already connected) and
the new connection replaces the old one.

l fallback (default): The current database connection is used. If the database is
not connected, an attempt is made to establish a connection.

l /factory <target system>: Specifies the target system for the connection. Enter this
parameter if you want to establish a connection to the application server.
Example: QBM.AppServer.Client.ServiceClientFactory, QBM.AppServer.Client

l -S: Stops the API Server.
l /baseaddress <base URL with port>: Specifies the base URL and port of the web
application where the API Server accepts connections.

Example

/baseaddress http://localhost:8184

l /baseurl <root URL>: Specifies the web application's URL.

Example

/baseaddress http://localhost

l /plugin <file name 1, file name 2>: Loads additional plug-ins from the given files.
l /htmldir <directory>: Specifies the directory to use to load additional HTML
application files and plug-in. This setting is intended for development scenarios.

Example

/htmldir C:example\imxweb\cpl

One Identity Manager 9.1.1 API Development Guide

ImxClient command line program
41

The cpl plug-in is loaded from the C:example\imxweb\cpl folder instead of the
default source.

l -T: Queries the status of the current API Server.
l -B: Locks the console.

Related topics

l ImxClient command line program on page 29
l ImxClient command overview on page 29

start-update

Checks if software updates are available. If software updates are found, the software
update starts.

Parameter

Login parameter:

l /conn <database connection>: Specifies the database you want to connect to.

Optional parameter:

l /target <update directory path>: Specifies the installation directory of the software
to update. If you do not enter anything here, the current directory is used.

l -C: Only checks if software updates are available. The software update does
not start.

l -G: Hides the software update user interface.

Related topics

l ImxClient command line program on page 29
l ImxClient command overview on page 29

workspace-info

Queries the state of the Angular working directory (existing applications and last API
client update).

One Identity Manager 9.1.1 API Development Guide

ImxClient command line program
42

Parameters

Optional parameter:

l /workspace: Specifies which working directory to query. If you do not enter anything
here, the current directory is used.

Related topics

l ImxClient command line program on page 29
l ImxClient command overview on page 29

One Identity Manager 9.1.1 API Development Guide

ImxClient command line program
43

About us

About us

One Identity solutions eliminate the complexities and time-consuming processes often
required to govern identities, manage privileged accounts and control access. Our solutions
enhance business agility while addressing your IAM challenges with on-premises, cloud and
hybrid environments.

Contacting us

For sales and other inquiries, such as licensing, support, and renewals, visit
https://www.oneidentity.com/company/contact-us.aspx.

Technical support resources

Technical support is available to One Identity customers with a valid maintenance contract
and customers who have trial versions. You can access the Support Portal at
https://support.oneidentity.com/.

The Support Portal provides self-help tools you can use to solve problems quickly and
independently, 24 hours a day, 365 days a year. The Support Portal enables you to:

l Submit and manage a Service Request
l View Knowledge Base articles
l Sign up for product notifications
l Download software and technical documentation
l View how-to videos at www.YouTube.com/OneIdentity
l Engage in community discussions
l Chat with support engineers online
l View services to assist you with your product

One Identity Manager 9.1.1 API Development Guide

About us
44

https://www.oneidentity.com/company/contact-us.aspx
https://support.oneidentity.com/
http://www.youtube.com/OneIdentity

Index

A

API development

basics 6

API files 12

async 21

authentication 10

primary 10-11

secondary 10

await 21

B

basics 6

C

CLI 29

code 21

command line 29

commandos 29

ConfigureAwait 21

conventions 8

CSV 20

custom methods 18

D

data structure

hierarchical 12

date format 19

deadlock 21

E

entity methods

general 12

examples 22

F

filtering 12

format

date 19

parameter 19

response 20

G

grouping 12

H

help 22

HTTP method 19

I

ImxClient 29

commandos 29

check-translations 30

compile api 31

compile app 32

connect 33

edit-config 33

fetch-files 34

One Identity Manager 9.1.1 API Development Guide

Index
45

Index

get-apistate 35

get-filestate 36

help 37

inject-package 37

install-apiserver 38

push-files 39

repl 40

run-apiserver 40

start-update 42

workspace-info 42

ImxClient command line program

start 29

L

limit 12

log out 11

login 11

M

method type 19

P

PageSize 12

parameter format 19

query parameter 20

URL parameter 19

PDF 20

policies 8

Q

query

authentication 8

authorization 8

processing 8

validation 8

query parameter 20

R

response 21

response code 21

response format 20

run

command line program 29

S

SDK 22

security token 12

session

status 12

session status

inquiry 12

software development kit 22

sort by 12

SQL files 18

StartIndex 12

T

token 12

U

URL parameter 19

One Identity Manager 9.1.1 API Development Guide

Index
46

	About this guide
	Basic principles of API development
	API Server basics
	General information about the API Server
	Calling the API Server web interface
	Encryption
	General notes on programming your own API methods

	Guidelines and conventions
	Handling of API Server queries
	Authentication
	Configuring authentication
	Authentication (primary)
	Logging out

	Session status and security tokens
	Querying session status

	API methods
	Entity methods
	User-defined methods
	SQL methods

	HTTP methods
	Date formats
	Parameter formats
	Path parameters
	Query parameters

	Response formats
	Response codes
	Avoiding deadlocks

	Examples and help – Software Development Kit
	Implementing your own APIs
	Managing API plug-ins
	Creating API plug-ins
	Editing API plug-ins
	Compiling TypeScript API clients

	Adding APIs to One Identity API projects
	Creating API projects
	Adding APIs to your own API projects

	ImxClient command line program
	Starting the ImxClient command line program
	ImxClient command overview
	check-translations
	compile-api
	compile-app
	connect
	edit-config
	fetch-files
	get-apistate
	get-filestate
	help
	inject-package
	install-apiserver
	push-files
	repl
	run-apiserver
	start-update
	workspace-info

	About us
	Contacting us
	Technical support resources

	Index

