This section describes the internal message-processing model of syslog-ng, as well as the flow-control feature that can prevent message losses.
The syslog-ng application monitors (polls) the sources defined in its configuration file, periodically checking each source for messages. When a log message is found in one of the sources, syslog-ng polls every source and reads the available messages. These messages are processed and put into the output buffer of syslog-ng (also called fifo). From the output buffer, the operating system sends the messages to the appropriate destinations.
In large-traffic environments many messages can arrive during a single poll loop, therefore syslog-ng reads only a fixed number of messages from each source. The log-fetch-limit() option specifies the number of messages read during a poll loop from a single source.
Figure 2: Managing log messages in syslog-ng
TCP and unix-stream sources can receive the logs from several incoming connections (for example, many different clients or applications). For such sources, syslog-ng reads messages from every connection, thus the log-fetch-limit() parameter applies individually to every connection of the source.
Figure 3: Managing log messages of TCP sources in syslog-ng
Log paths without flow-control
Every destination has its own output buffer. The output buffer is needed because the destination might not be able to accept all messages immediately. The log-fifo-size() parameter sets the size of the output buffer. The output buffer must be larger than the log-fetch-limit() of the sources, to ensure that every message read during the poll loop fits into the output buffer. If the log path sends messages to a destination from multiple sources, the output buffer must be large enough to store the incoming messages of every source.
Log paths with flow-control
The syslog-ng application uses flow-control in the following cases:
-
Hard flow-control: the flow-control flag is enabled for the particular log path.
-
Soft flow-control: the log path includes a file destination.
NOTE: The way flow-control works has changed significantly in version syslog-ng OSE
The flow-control of syslog-ng introduces a control window to the source that tracks how many messages can syslog-ng accept from the source. Every message that syslog-ng reads from the source lowers the window size by one, every message that syslog-ng successfully sends from the output buffer increases the window size by one. If the window is full (that is, its size decreases to zero), syslog-ng stops reading messages from the source. The initial size of the control window is by default 100. If a source accepts messages from multiple connections, all messages use the same control window.
When using flow-control, syslog-ng automatically sets the size of the output buffer so that it matches the size of the control window of the sources. Note that starting with syslog-ng OSE
NOTE: If the source can handle multiple connections (for example, network() and syslog()), the size of the control window is divided by the value of the max-connections() parameter and this smaller control window is applied to each connection of the source.
Dynamic flow-control
In addition to the static control window set using the log-iw-size() option, you can also allocate a dynamic window to the source. The syslog-ng application uses this window to dynamically increase the static window of the active connections. The dynamic window is distributed evenly among the active connections of the source. The syslog-ng application periodically checks which connections of the source are active, and redistributes the dynamic window. If only one of the connections is active, it receives the entire dynamic window, while other connections receive only their share of the static window.
Using dynamic flow-control on your syslog-ng server is useful when the source has lots of connections, but only a small subset of the active clients send messages at high rate, and the memory of the syslog-ng server is limited. In other cases, it is currently not recommended, because it can result in higher memory usage and fluctuating performance compared to using only the static window.
When flow-control is used, every source has its own control window. As a worst-case situation, memory of the host must be greater than the total size of the messages of every control window, plus the size of the dynamic window, that is, the log-iw-size()+dynamic-window-size(). This applies to every source that sends logs to the particular destination. Thus if two sources having several connections and heavy traffic send logs to the same destination, the control window of both sources must fit into the memory of the host. Otherwise, some messages might not fit in the memory, and messages may be lost.
If dynamic flow-control is disabled (which is the default behavior), the value of the log-iw-size() option cannot be lower than 100. If dynamic flow-control is enabled, you can decrease the value of the log-iw-size() option (to the minimum of 1).
In case of soft flow-control there is no message lost if the destination can accept messages. It is possible to lose messages if it cannot accept messages (for example, the file destination is not writable, or the disk becomes full), and all buffers are full. Soft flow-control cannot be configured, it is automatically available for file destinations.
Hard flow-control: In case of hard flow-control there is no message lost. To use hard flow-control, enable the flow-control flag in the log path. Hard flow-control is available for all destinations.
Example: Soft flow-control
source s_file { file("/tmp/input_file.log"); }; destination d_file { file("/tmp/output_file.log"); }; destination d_tcp { network("127.0.0.1" port(2222) ); }; log { source(s_file); destination(d_file); destination(d_tcp); };
|
Caution:
Hazard of data loss! For destinations other than file, soft flow-control is not available. Thus, it is possible to lose log messages on those destinations. To avoid data loss on those destinations, use hard flow-control. |
Example: Hard flow-control
source s_file { file("/tmp/input_file.log"); }; destination d_file { file("/tmp/output_file.log"); }; destination d_tcp { network("127.0.0.1" port(2222) ); }; log { source(s_file); destination(d_file); destination(d_tcp); flags(flow-control); };
Handling outgoing messages
The syslog-ng application handles outgoing messages the following way:
Figure 4: Handling outgoing messages in syslog-ng OSE
-
Output queue: Messages from the output queue are sent to the target syslog-ng server. The syslog-ng application puts the outgoing messages directly into the output queue, unless the output queue is full. The output queue can hold 64 messages, this is a fixed value and cannot be modified.
-
Disk buffer: If the output queue is full and disk-buffering is enabled, syslog-ng puts the outgoing messages into the disk buffer of the destination.
-
Overflow queue: If the output queue is full and the disk buffer is disabled or full, syslog-ng puts the outgoing messages into the overflow queue of the destination. (The overflow queue is identical to the output buffer used by other destinations.) The log-fifo-size() parameter specifies the number of messages stored in the overflow queue, unless flow-control is enabled. When dynamic flow-control is enabled, syslog-ng sets the size of the overflow queue automatically. For details on sizing the log-fifo-size() parameter, see Configuring flow-control.