Chat now with support
Chat with Support

One Identity Safeguard for Privileged Sessions 5.9.0 - Administration Guide

Preface Introduction The concepts of SPS The Welcome Wizard and the first login Basic settings User management and access control Managing SPS
Controlling SPS: reboot, shutdown Managing Safeguard for Privileged Sessions clusters Managing a high availability SPS cluster Upgrading SPS Managing the SPS license Accessing the SPS console Sealed mode Out-of-band management of SPS Managing the certificates used on SPS
General connection settings HTTP-specific settings ICA-specific settings RDP-specific settings SSH-specific settings Telnet-specific settings VMware Horizon View connections VNC-specific settings Indexing audit trails Using the Search (classic) interface Using the Search interface Searching session data on a central node in a cluster Advanced authentication and authorization techniques Reports The SPS RPC API The SPS REST API SPS scenarios Troubleshooting SPS Configuring external devices Using SCP with agent-forwarding Security checklist for configuring SPS Jumplists for in-product help Third-party contributions About us

Authenticating users to an LDAP server

Purpose:

You can use the LDAP policy to set the details of the LDAP server you wish to use to:

  • authenticate gateway users (available in SSH and Telnet as Authentication Policy)
  • query gateway groups (available for RDP, Telnet, SSH, and ICA)
  • query remote groups (available for RDP, Telnet, SSH, ICA, and HTTP)

NOTE: This feature is not available for Virtual Network Computing (VNC).

NOTE:
  • In RDP (including RDG) connections, you can use the LDAP policy for group membership check only, you cannot use it as the authentication backend. However, you can use a trusted AD domain for authentication and LDAP for group membership check.

    In this case, LDAP will only use the username without the domain name to verify the group membership.

  • SPS treats user and group names in a case insensitive manner if the matching rule for the attribute in question is case insensitive in the LDAP database.

To configure an LDAP policy for a connection, complete the following steps.

Steps:
  1. Navigate to Policies > LDAP Servers and click to create a new LDAP policy.

    Figure 145: Policies > LDAP Servers — Configuring LDAP Server policies

  2. Enter a name for the policy (for example ldapservers).

  3. Enter the IP address or hostname and port of the LDAP server into the Server Address field. If you want to encrypt the communication between SPS and the LDAP server, in case of TLS, enter 636 as the port number, or in case of STARTTLS, enter 389 as the port number.

    Use an IPv4 address.

    To add multiple servers, click and enter the address of the next server. If a server is unreachable, SPS will try to connect to the next server in the list in failover fashion.

    Caution:

    If you will use a TLS-encrypted with certificate verification to connect to the LDAP server, use the full domain name (for example ldap.example.com) in the Server Address field, otherwise the certificate verification might fail. The name of the LDAP server must appear in the Common Name of the certificate.

  4. Select the type of your LDAP server in the Type field. Select Active Directory to connect to Microsoft Active Directory servers, or Posix to connect to servers that use the POSIX LDAP scheme.

  5. In the User Base DN field, enter the name of the DN to be used as the base of queries regarding users (for example: OU=People,DC=demodomain,DC=exampleinc).

    NOTE:

    You must fill in this field. It is OK to use the same value for User Base DN and Group Base DN.

    However, note that specifying a sufficiently narrow base for the LDAP subtrees where users and groups are stored can speed up LDAP operations.

  6. In the Group Base DN field, enter the name of the DN to be used as the base of queries regarding groups (for example: OU=Groups,DC=demodomain,DC=exampleinc).

    NOTE:

    You must fill in this field. It is OK to use the same value for User Base DN and Group Base DN.

    However, note that specifying a sufficiently narrow base for the LDAP subtrees where users and groups are stored can speed up LDAP operations.

  7. In the Bind DN field, enter the Distinguished Name that SPS should use to bind to the LDAP directory (for example: CN=Administrator,DC=demodomain,DC=exampleinc).

    NOTE:

    SPS accepts both pre-win2000-style and Win2003-style account names (User Principal Names), for example administrator@example.com is also accepted.

  8. To configure or change the password to use when binding to the LDAP server, click Change and enter the password. Click Update. Click Commit.

    NOTE:

    SPS accepts passwords that are not longer than 150 characters. The following special characters can be used: !"#$%&'()*+,-./:;<=>?@[\]^-`{|}

  1. Skip this step if you use passwords to authenticate the users.

    • If you use public-key authentication and receive the public key of the users from the LDAP database, enter the name of the LDAP attribute that stores the public keys of the users into the Publickey attribute name field. For details on using public-key authentication with the LDAP database, see Configuring public-key authentication on SPS.

    • If you use X.509 certificate for authentication and receive the certificates of the users from the LDAP database, enter the name of the LDAP attribute that stores the certificates of the users into the Certificate attribute name field.

  2. Skip this step if you use passwords to authenticate the users.

    • If you use public-key authentication and want SPS to generate server-side encryption keys on-the-fly and store them in a separate attribute on the LDAP server, enter the name of the attribute into the Generated publickey attribute name field.

    • If you use certificate authentication and want SPS to generate server-side certificates on-the-fly and store them in a separate attribute on the LDAP server, enter the name of the attribute into the Generated certificate attribute name field.

  3. If you use an Active Directory, you can enable nested groups.

    Caution:

    Nested groups are only useful when authenticating the users to Microsoft Active Directory, but can slow down the query and cause the connection to timeout if the LDAP tree is very large. In this case, disable the Enable nested groups option.

  1. If you want to encrypt the communication between SPS and the LDAP server, in Encryption, select the TLS or the STARTTLS option and complete the following steps:

    Figure 146: Policies > LDAP Servers — Configuring encryption

    NOTE:

    TLS-encrypted connection to Microsoft Active Directory is supported only on Windows 2003 Server and newer platforms. Windows 2000 Server is not supported.

    • If you want SPS to verify the certificate of the server, select Only accept certificates issued by the specified CA certificate and click the icon in the CA X.509 certificate field. A pop-up window is displayed.

      Click Browse, select the certificate of the Certificate Authority (CA) that issued the certificate of the LDAP server, then click Upload. Alternatively, you can paste the certificate into the Copy-paste field and click Set.

      SPS will use this CA certificate to verify the certificate of the server, and reject the connections if the verification fails.

      Caution:

      If you will use a TLS-encrypted with certificate verification to connect to the LDAP server, use the full domain name (for example ldap.example.com) in the Server Address field, otherwise the certificate verification might fail. The name of the LDAP server must appear in the Common Name of the certificate.

    • If the LDAP server requires mutual authentication, that is, it expects a certificate from SPS, enable Authenticate as client. Generate and sign a certificate for SPS, then click in the Client X.509 certificate field to upload the certificate. After that, click in the Client key field and upload the private key corresponding to the certificate.

    One Identity recommends using 2048-bit RSA keys (or stronger).

  1. Optional Step: If your LDAP server uses a custom POSIX LDAP scheme, you might need to set which LDAP attributes store the username, or the attributes that set group memberships. For example, if your LDAP scheme does not use the uid attribute to store the usernames, set the Username (userid) attribute name option. You can customize group-membership attributes using the POSIX group membership attribute name and GroupOfUniqueNames membership attribute name options.

  1. To commit the changes, click Commit.

  2. Click Test to test the connection.

    NOTE:

    Testing TLS and STARTTLS-encrypted connections is not supported.

Audit policies

An audit trail is a file storing the recorded activities of the administrators. Audit trails are not created automatically for every connection: auditing must be enabled manually in the channel policy used in the connection. The available default channel policies enable auditing for the most common channels. Audit trails are automatically compressed, and can be encrypted, timestamped, and signed as well. Audit trails can be replayed using the Safeguard Desktop Player application (for details, see Safeguard Desktop Player User Guide), or directly in your browser (for details, see Replaying audit trails in your browser in Search (classic)).

TIP:

By default, every connection uses the built-in default audit policy. Unless you use a custom audit policy, modifying the default audit policy will affect every audited channel of the connections passing through SPS.

Caution:

In RDP connections, if the client uses the Windows login screen to authenticate on the server, the password of the client is visible in the audit trail. To avoid displaying the password when replaying the audit trail, you are recommended to encrypt the upstream traffic in the audit trail using a separate certificate from the downstream traffic. For details, see "Encrypting audit trails" in the Administration Guide.

Encrypting audit trails

Purpose:

To prevent unauthorized access to the audit trail files, SPS can encrypt:

  • The entire trail.

  • The entire trail, and the upstream part with an additional (set of) certificate(s).

  • Only the upstream part.

With upstream encryption, the passwords are visible only with the private key of the certificate used for encrypting the upstream traffic.

NOTE:

Even if the upstream traffic is encrypted with a separate certificate, only one audit trail file is created for a session.

Caution:

SPS 5 F4 and later versions use a new encryption algorithm to encrypt the recorded audit trails (AES128-GCM). This change has the following effects:

  • If you are using external indexers to index your audit trails, you must upgrade them to the latest version. Earlier versions will not be able to index encrypted audit trails recorded with SPS 5 F4 and later.

  • To replay an encrypted audit trail recorded with SPS 5 F4 or later, you can use the latest version of the Safeguard Desktop Player application, or the browser-based player of SPS. You cannot replay such audit trails using earlier versions of Safeguard Desktop Player, nor any version of the Audit Player application.

Encrypting the upstream part has the following limitations:

  • During indexing, command detection does not work without the upstream encryption keys.

TIP:

For more information on uploading certificates for indexing and replaying audit trails, see:

Encrypting audit trails requires one or more X.509 certificate in PEM format that uses an RSA key, depending on the configuration.

NOTE:

Certificates are used as a container and delivery mechanism. For encryption and decryption, only the keys are used.

One Identity recommends using 2048-bit RSA keys (or stronger).

Use every keypair or certificate only for one purpose. Do not reuse cryptographic keys or certificates, for example, do not use the certificate of the SPS webserver to encrypt audit trails, or do not use the same keypair for signing and encrypting data.

The following encryption options are available:

  • Encrypt with a single certificate. This is the most simple approach: SPS uses one certificate to encrypt the audit trails, and anyone who has the private key of that certificate can replay the audit trails. If that key is lost, there is no way to open the audit trails.

  • Encrypt separately with multiple certificates. SPS uses two or more certificates separately to encrypt the audit trails, and anyone who has the private key of one of the encryption certificates can replay the audit trails.

  • Encrypt jointly with two certificates. SPS uses two certificates together (a certificate-pair) to encrypt the audit trails. The private keys of both encryption certificates are needed to replay the audit trails. This is a kind of "four-eyes in auditing".

You can combine the different encryption methods, so for example it is possible to encrypt the audit trails with multiple certificate-pairs, and to replay the trails only if the private keys of a certificate-pair are available. This is true for encrypting the upstream traffic as well. At the extreme, you will need four private keys to fully replay an audit trail: two to open the normal traffic, and two more to display the upstream traffic.

Note that SPS itself cannot create the certificates used to encrypt the audit trails.

TIP:

If two certificates are displayed in a row, they are a certificate-pair and you need the private key of both to replay the audit trails. If two certificates are displayed in separate rows, you need the one of the private keys to replay the audit trails. If there are multiple rows containing two certificates, you need the private keys of the certificate(s) listed in any of the rows.

Figure 147: Policies > Audit Policies — Encrypting audit trails: joint encryption with a certificate pair

Each audit policy can have up to 8 lines of certificate pairs.

Steps:
  1. Navigate to Policies > Audit Policies and select the audit policy you will use in your connections.

    TIP:

    By default, every connection uses the built-in default audit policy. Unless you use a custom audit policy, modifying the default audit policy will affect every audited channel of the connections passing through SPS.

  2. Select the Enable encryption option.

  3. To upload a certificate for encrypting the entire trail:

    1. Click the icon under the Encryption cert (X.509 RSA) 4-eyes cert (X.509 RSA) row.

    2. Click on the left icon and upload a certificate to SPS. This certificate will be used to encrypt the audit trails, and it must not include the private key.

      NOTE:

      To replay the audit trails, you need the private key of the certificate on the computer running the Safeguard Desktop Player application.

    3. Optional step: To encrypt the audit trails jointly with another certificate, click on the right icon and upload a certificate to SPS. Note that the private key of both certificates will be required to replay the audit trails.

    4. Repeat these steps to encrypt the audit trails separately with additional certificates.

  4. To upload a certificate for encrypting the upstream traffic:

    1. Select Encrypt upstream traffic with different certificates.

    2. Click the icon under the Encryption cert (X.509 RSA) 4-eyes cert (X.509 RSA) row.

    3. Click on the left icon and upload a certificate to SPS. This certificate will be used to encrypt the audit trails, and it must not include the private key.

      NOTE:

      To replay the upstream part of the audit trails, you need the private key of the certificate on the computer running the Safeguard Desktop Player application.

    4. Optional step: To encrypt the audit trails jointly with another certificate, click on the right icon and upload a certificate to SPS. Note that the private key of both certificates will be required to replay the audit trails.

    5. Repeat these steps to encrypt the upstream separately with additional certificates.

  5. Click Commit.

Timestamping audit trails with built-in timestamping service

Purpose:

To add timestamps to the audit trails by using the built-in timestamping service of SPS, complete the following steps:

Steps:
  1. Configure the timestamping interval. You have to repeat these steps for each protocol (HTTP, ICA, RDP, SSH, Telnet, and VNC) you want to configure:

    Figure 148: <Protocol name> Control > Global Options —Configuring local timestamping

    1. In the protocol control settings, navigate to Global Options > Timestamping (for example, SSH Control > Global Options > Timestamping).

    2. Select Local.

      NOTE:

      Make sure that you leave the Timestamping policy field empty. Timestamping policy has relevance only when Timestamping is set to Remote.

    3. Set the Signing interval. You can choose any value between 10 and 100 000 seconds.

      NOTE:

      The same interval setting applies to timestamping and signing.

    4. Click Commit.

  2. Configure audit policies to use timestamping. You have to repeat these steps for each audit policy you want to configure:

    1. Navigate to Policies > Audit Policies and select the audit policy you will use in your connections.

      TIP:

      By default, every connection uses the built-in default audit policy. Unless you use a custom audit policy, modifying the default audit policy will affect every audited channel of the connections passing through SPS.

    2. Select the Enable timestamping option.

      Figure 149: Policies > Audit Policies — Timestamping audit trails

    3. Click Commit. SPS will automatically add timestamps to the audit trails of every connection that is audited and uses this audit policy.

      NOTE:

      For details on how to change the certificate used for timestamping, see Managing the certificates used on SPS.

Related Documents