Chat now with support
Chat mit Support

syslog-ng Premium Edition 7.0.31 - Administration Guide

Preface Introduction to syslog-ng The concepts of syslog-ng Installing syslog-ng PE The syslog-ng PE quick-start guide The syslog-ng PE configuration file Collecting log messages — sources and source drivers
How sources work default-network-drivers: Receive and parse common syslog messages internal: Collecting internal messages file: Collecting messages from text files google-pubsub: collecting messages from the Google Pub/Sub messaging service wildcard-file: Collecting messages from multiple text files linux-audit: Collecting messages from Linux audit logs mssql, oracle, sql: collecting messages from an SQL database network: Collecting messages using the RFC3164 protocol (network() driver) office365: Fetching logs from Office 365 osquery: Collect and parse osquery result logs pipe: Collecting messages from named pipes program: Receiving messages from external applications python: writing server-style Python sources python-fetcher: writing fetcher-style Python sources snmptrap: Read Net-SNMP traps syslog: Collecting messages using the IETF syslog protocol (syslog() driver) system: Collecting the system-specific log messages of a platform systemd-journal: Collecting messages from the systemd-journal system log storage systemd-syslog: Collecting systemd messages using a socket tcp, tcp6,udp, udp6: Collecting messages from remote hosts using the BSD syslog protocol udp-balancer: Receiving UDP messages at very high rate unix-stream, unix-dgram: Collecting messages from UNIX domain sockets windowsevent: Collecting Windows event logs
Sending and storing log messages — destinations and destination drivers
elasticsearch2>: Sending messages directly to Elasticsearch version 2.0 or higher (DEPRECATED) elasticsearch-http: Sending messages to Elasticsearch HTTP Event Collector file: Storing messages in plain-text files google_pubsub(): Sending logs to the Google Cloud Pub/Sub messaging service hdfs: Storing messages on the Hadoop Distributed File System (HDFS) http: Posting messages over HTTP kafka(): Publishing messages to Apache Kafka (Java implementation) (DEPRECATED) kafka-c(): Publishing messages to Apache Kafka using the librdkafka client (C implementation) logstore: Storing messages in encrypted files mongodb: Storing messages in a MongoDB database network: Sending messages to a remote log server using the RFC3164 protocol (network() driver) pipe: Sending messages to named pipes program: Sending messages to external applications python: writing custom Python destinations sentinel(): Sending logs to the Microsoft Azure Sentinel cloud snmp: Sending SNMP traps smtp: Generating SMTP messages (email) from logs splunk-hec: Sending messages to Splunk HTTP Event Collector sql(): Storing messages in an SQL database stackdriver: Sending logs to the Google Stackdriver cloud syslog: Sending messages to a remote logserver using the IETF-syslog protocol syslog-ng(): Forward logs to another syslog-ng node tcp, tcp6, udp, udp6: Sending messages to a remote log server using the legacy BSD-syslog protocol (tcp(), udp() drivers) unix-stream, unix-dgram: Sending messages to UNIX domain sockets usertty: Sending messages to a user terminal — usertty() destination Client-side failover
Routing messages: log paths, flags, and filters Global options of syslog-ng PE TLS-encrypted message transfer Advanced Log Transport Protocol Reliability and minimizing the loss of log messages Manipulating messages parser: Parse and segment structured messages Processing message content with a pattern database Correlating log messages Enriching log messages with external data Monitoring statistics and metrics of syslog-ng Multithreading and scaling in syslog-ng PE Troubleshooting syslog-ng Best practices and examples The syslog-ng manual pages Glossary

Actions and message correlation

Certain features of generating messages can be used only if message correlation is used as well. For details on correlating messages, see Correlating log messages using pattern databases.

  • The syslog-ng PE application automatically fills the fields for the generated message based on the scope of the context, for example, the HOST and PROGRAM fields if the context-scope is program.

  • When used together with message correlation, you can also refer to fields and values of earlier messages of the context by adding the @<distance-of-referenced-message-from-the-current> suffix to the macro. For details, see Referencing earlier messages of the context.

    Example: Referencing values from an earlier message

    The following action can be used to log the length of an SSH session (the time difference between a login and a logout message in the context):

    <actions>
        <action>
            <message>
                <values>
                    <value name="MESSAGE">An SSH session for ${SSH_USERNAME}@1 from ${SSH_CLIENT_ADDRESS}@2 closed. Session lasted from ${DATE}@2 to ${DATE} </value>
                </values>
            </message>
        </action>
    </actions>
  • You can use the name-value pairs of other messages of the context. If you set the inherit-properties attribute of the generated message to context, syslog-ng PE collects every name-value pair from each message stored in the context, and includes them in the generated message. This means that you can refer to a name-value pair without having to know which message of the context included it. If a name-value pair appears in multiple messages of the context, the value in the latest message will be used. To refer to an earlier value, use the @<distance-of-referenced-message-from-the-current> suffix format.

    <action>
        <message inherit-properties='context'>
    Example: Using the inherit-properties option

    For example, if inherit-properties is set to context, and you have a rule that collects SSH login and logout messages to the same context, you can use the following value to generate a message collecting the most important information form both messages, including the beginning and end date.

    <value name="MESSAGE">An SSH session for ${SSH_USERNAME} from ${SSH_CLIENT_ADDRESS} closed. Session lasted from ${DATE}@2 to $DATE pid: $PID.</value>

    The following is a detailed rule for this purpose.

    <patterndb version='4' pub_date='2015-04-13'>
        <ruleset name='sshd' id='12345678'>
            <pattern>sshd</pattern>
                <rules>
                    <!-- The pattern database rule for the first log message -->
                    <rule provider='me' id='12347598' class='system'
                        context-id="ssh-login-logout" context-timeout="86400"
                        context-scope="process">
                    <!-- Note the context-id that groups together the
                    relevant messages, and the context-timeout value that
                    determines how long a new message can be added to the
                    context  -->
                        <patterns>
                            <pattern>Accepted @ESTRING:SSH.AUTH_METHOD: @for @ESTRING:SSH_USERNAME: @from @ESTRING:SSH_CLIENT_ADDRESS: @port @ESTRING:: @@ANYSTRING:SSH_SERVICE@</pattern>
                            <!-- This is the actual pattern used to identify
                            the log message. The segments between the @
                            characters are parsers that recognize the variable
                            parts of the message - they can also be used as
                            macros.  -->
                        </patterns>
                    </rule>
                    <!-- The pattern database rule for the fourth log message -->
                    <rule provider='me' id='12347599' class='system' context-id="ssh-login-logout" context-scope="process">
                        <patterns>
                             <pattern>pam_unix(sshd:session): session closed for user @ANYSTRING:SSH_USERNAME@</pattern>
                        </patterns>
                        <actions>
                            <action>
                                <message inherit-properties='context'>
                                    <values>
                                        <value name="MESSAGE">An SSH session for ${SSH_USERNAME} from ${SSH_CLIENT_ADDRESS} closed. Session lasted from ${DATE}@2 to $DATE pid: $PID.</value>
                                        <value name="TRIGGER">yes</value>
                                        <!-- This is the new log message
                                        that is generated when the logout
                                        message is received. The macros ending
                                        with @2 reference values of the
                                        previous message from the context. -->
                                    </values>
                                </message>
                            </action>
                        </actions>
                    </rule>
                </rules>
        </ruleset>
    </patterndb>
  • It is possible to generate a message when the context-timeout of the original message expires and no new message is added to the context during this time. To accomplish this, include the trigger="timeout" attribute in the action element:

    <action trigger="timeout">
    Example: Sending alert when a client disappears

    The following example shows how to combine various features of syslog-ng PE to send an email alert if a client stops sending messages.

    • Configure your clients to send MARK messages periodically. It is enough to configure MARK messages for the destination that forwards your log messages to your syslog-ng PE server (mark-mode(periodical)).

    • On your syslog-ng PE server, create a pattern database rule that matches on the incoming MARK messages. In the rule, set the context-scope attribute to host, and the context-timeout attribute to a value that is higher than the mark-freq value set on your clients (by default, mark-freq is 1200 seconds, so set context-timeout at least to 1500 seconds, but you might want to use a higher value, depending on your environment).

    • Add an action to this rule that sends you an email alert if the context-timeout expires, and the server does not receive a new MARK message (<action trigger="timeout">).

    • On your syslog-ng PE server, use the pattern database in the log path that handles incoming log messages.

Creating pattern databases

Using pattern parsers

Pattern parsers attempt to parse a part of the message using rules specific to the type of the parser. Parsers are enclosed between @ characters. The syntax of parsers is the following:

  • a beginning @ character,

  • the type of the parser written in capitals,

  • optionally a name,

  • parameters of the parser, if any, and

  • a closing @ character.

Example: Pattern parser syntax

A simple parser:

@STRING@

A named parser:

@STRING:myparser_name@

A named parser with a parameter:

@STRING:myparser_name:*@

A parser with a parameter, but without a name:

@STRING::*@

Patterns and literals can be mixed together. For example, to parse a message that begins with the Host: string followed by an IP address (for example, Host: 192.168.1.1), the following pattern can be used: Host:@IPv4@.

NOTE: Note that using parsers is a CPU-intensive operation. Use the ESTRING and QSTRING parsers whenever possible, as these can be processed much faster than the other parsers.

Example: Using the STRING and ESTRING parsers

For example, look at the following message: user=joe96 group=somegroup.

  • @STRING:mytext:@ parses only to the first non-alphanumeric character (=), parsing only user, so the value of the ${mytext} macro will be user

  • @STRING:mytext:=@ parses the equation mark as well, and proceeds to the next non-alphanumeric character (the whitespace), resulting in user=joe96

  • @STRING:mytext:= @ will parse the whitespace as well, and proceed to the next non-alphanumeric non-equation mark non-whitespace character, resulting in user=joe96 group=somegroup

Of course, usually it is better to parse the different values separately, like this: "user=@STRING:user@ group=@STRING:group@".

If the username or the group may contain non-alphanumeric characters, you can either include these in the second parameter of the parser (as shown at the beginning of this example), or use an ESTRING parser to parse the message till the next whitespace: "user=@ESTRING:user: @group=@ESTRING:group: @".

Pattern parsers of syslog-ng PE

The following parsers are available in syslog-ng PE.

@ANYSTRING@

Parses everything to the end of the message, you can use it to collect everything that is not parsed specifically to a single macro. In that sense its behavior is similar to the greedy() option of the CSV parser.

@DOUBLE@

An obsolete alias of the @FLOAT@ parser.

@ESTRING@

This parser has a required parameter that acts as the stopcharacter: the parser parses everything until it finds the stopcharacter. For example, to stop by the next " (double quote) character, use @ESTRING::"@. You can use the colon (:) as stopcharacter as well, for example: @ESTRING:::@. You can also specify a stopstring instead of a single character, for example, @ESTRING::stop_here.@. The @ character cannot be a stopcharacter, nor can line-breaks or tabs.

@FLOAT@

A floating-point number that may contain a dot (.) character. (Up to syslog-ng 3.1, the name of this parser was @DOUBLE@.)

@IPv4@

Parses an IPv4 IP address (numbers separated with a maximum of 3 dots).

@IPv6@

Parses any valid IPv6 IP address.

@IPvANY@

Parses any IP address.

@NLSTRING@

This parser parses everything until the next new-line character (more precisely, until the next Unix-style LF or Windows-style CRLF character). For single-line messages, NLSTRING is equivalent with ANYSTRING. For multi-line messages, NLSTRING parses to the end of the current line, while ANYSTRING parses to the end of the message. Using NLSTRING is useful when parsing multi-line messages, for example, Windows logs. For example, the following pattern parses information from Windows security auditing logs.

<pattern>Example-PC\Example: Security Microsoft Windows security auditing.: [Success Audit] A new process has been created.

    Subject:
    Security ID: @LNSTRING:.winaudit.SubjectUserSid@
    Account Name: @LNSTRING:.winaudit.SubjectUserName@
    Account Domain: @LNSTRING:.winaudit.SubjectDomainName@
    Logon ID: @LNSTRING:.winaudit.SubjectLogonId@

    Process Information:
    New Process ID: @LNSTRING:.winaudit.NewProcessId@
    New Process Name: @LNSTRING:.winaudit.NewProcessName@
    Token Elevation Type: @LNSTRING:.winaudit.TokenElevationType@
    Creator Process ID: @LNSTRING:.winaudit.ProcessId@
    Process Command Line: @LNSTRING:.winaudit.CommandLine@

    Token Elevation Type indicates the type of token that was assigned to the new process in accordance with User Account Control policy.</pattern>
@NUMBER@

A sequence of decimal (0-9) numbers (for example, 1, 0687, and so on). Note that if the number starts with the 0x characters, it is parsed as a hexadecimal number, but only if at least one valid character follows 0x. A leading hyphen () is accepted for non-hexadecimal numbers, but other separator characters (for example, dot or comma) are not. To parse floating-point numbers, use the @FLOAT@ parser.

@QSTRING@

Parse a string between the quote characters specified as parameter. Note that the quote character can be different at the beginning and the end of the quote, for example: @QSTRING::"@ parses everything between two quotation marks ("), while @QSTRING:&lt;&gt;@ parses from an opening bracket to the closing bracket. The @ character cannot be a quote character, nor can line-breaks or tabs.

@STRING@

A sequence of alphanumeric characters (0-9, A-z), not including any whitespace. Optionally, other accepted characters can be listed as parameters (for example, to parse a complete sentence, add the whitespace as parameter, like: @STRING:: @). Note that the @ character cannot be a parameter, nor can line-breaks or tabs.

Verwandte Dokumente

The document was helpful.

Bewertung auswählen

I easily found the information I needed.

Bewertung auswählen