Chat now with support
Chat mit Support

syslog-ng Premium Edition 7.0.33 - Administration Guide

Preface Introduction to syslog-ng The concepts of syslog-ng Installing syslog-ng PE The syslog-ng PE quick-start guide The syslog-ng PE configuration file Collecting log messages — sources and source drivers
How sources work default-network-drivers: Receive and parse common syslog messages internal: Collecting internal messages file: Collecting messages from text files google-pubsub: collecting messages from the Google Pub/Sub messaging service wildcard-file: Collecting messages from multiple text files linux-audit: Collecting messages from Linux audit logs mssql, oracle, sql: collecting messages from an SQL database network: Collecting messages using the RFC3164 protocol (network() driver) office365: Fetching logs from Office 365 osquery: Collect and parse osquery result logs pipe: Collecting messages from named pipes program: Receiving messages from external applications python: writing server-style Python sources python-fetcher: writing fetcher-style Python sources snmptrap: Read Net-SNMP traps syslog: Collecting messages using the IETF syslog protocol (syslog() driver) system: Collecting the system-specific log messages of a platform systemd-journal: Collecting messages from the systemd-journal system log storage systemd-syslog: Collecting systemd messages using a socket tcp, tcp6,udp, udp6: Collecting messages from remote hosts using the BSD syslog protocol udp-balancer: Receiving UDP messages at very high rate unix-stream, unix-dgram: Collecting messages from UNIX domain sockets windowsevent: Collecting Windows event logs
Sending and storing log messages — destinations and destination drivers
elasticsearch2>: Sending messages directly to Elasticsearch version 2.0 or higher (DEPRECATED) elasticsearch-http: Sending messages to Elasticsearch HTTP Event Collector file: Storing messages in plain-text files google_pubsub(): Sending logs to the Google Cloud Pub/Sub messaging service google_pubsub-managedaccount(): Sending logs to the Google Cloud Pub/Sub messaging service authenticated by Google Cloud managed service account hdfs: Storing messages on the Hadoop Distributed File System (HDFS) http: Posting messages over HTTP kafka(): Publishing messages to Apache Kafka (Java implementation) (DEPRECATED) kafka-c(): Publishing messages to Apache Kafka using the librdkafka client (C implementation) logstore: Storing messages in encrypted files mongodb: Storing messages in a MongoDB database network: Sending messages to a remote log server using the RFC3164 protocol (network() driver) pipe: Sending messages to named pipes program: Sending messages to external applications python: writing custom Python destinations sentinel(): Sending logs to the Microsoft Azure Sentinel cloud snmp: Sending SNMP traps smtp: Generating SMTP messages (email) from logs splunk-hec: Sending messages to Splunk HTTP Event Collector sql(): Storing messages in an SQL database stackdriver: Sending logs to the Google Stackdriver cloud syslog: Sending messages to a remote logserver using the IETF-syslog protocol syslog-ng(): Forward logs to another syslog-ng node tcp, tcp6, udp, udp6: Sending messages to a remote log server using the legacy BSD-syslog protocol (tcp(), udp() drivers) unix-stream, unix-dgram: Sending messages to UNIX domain sockets usertty: Sending messages to a user terminal — usertty() destination Client-side failover
Routing messages: log paths, flags, and filters Global options of syslog-ng PE TLS-encrypted message transfer Advanced Log Transport Protocol Reliability and minimizing the loss of log messages Manipulating messages parser: Parse and segment structured messages Processing message content with a pattern database Correlating log messages Enriching log messages with external data Monitoring statistics and metrics of syslog-ng Multithreading and scaling in syslog-ng PE Troubleshooting syslog-ng Best practices and examples The syslog-ng manual pages Glossary

Downloading sample pattern databases

To simplify the building of pattern databases, One Identity has released (and will continue to release) sample databases. You can download sample pattern databases from the One Identity GitHub page (older samples are temporarily available here).

Note that these pattern databases are only samples and experimental databases. They are not officially supported, and may or may not work in your environment.

The syslog-ng pattern databases are available under the Creative Commons Attribution-Share Alike 3.0 (CC by-SA) license. This includes every pattern database written by community contributors or the One Identity staff. It means that:

  • You are free to use and modify the patterns for your needs.

  • If you redistribute the pattern databases, you must distribute your modifications under the same license.

  • If you redistribute the pattern databases, you must make it obvious that the source of the original syslog-ng pattern databases is the One Identity GitHub page.

For legal details, the full text of the license is available here.

If you create patterns that are not available in the GitHub repository, consider sharing them with us and the syslog-ng community. To do this, open a GitHub issue, or send them to the syslog-ng mailing list.

Correlating log messages using pattern databases

The syslog-ng PE application can correlate log messages identified using pattern databases. Alternatively, you can also correlate log messages using the grouping-by() parser. For details, see Correlating messages using the grouping-by() parser.

Log messages are supposed to describe events, but applications often separate information about a single event into different log messages. For example, the Postfix email server logs the sender and recipient addresses into separate log messages, or in case of an unsuccessful login attempt, the OpenSSH server sends a log message about the authentication failure, and the reason of the failure in the next message. Of course, messages that are not so directly related can be correlated as well, for example, login-logout messages, and so on.

To correlate log messages with syslog-ng PE, you can add messages into message-groups called contexts. A context consists of a series of log messages that are related to each other in some way, for example, the log messages of an SSH session can belong to the same context. As new messages come in, they may be added to a context. Also, when an incoming message is identified it can trigger actions to be performed, for example, generate a new message that contains all the important information that was stored previously in the context.

(For details on triggering actions and generating messages, see Triggering actions for identified messages.)

There are two attributes for pattern database rules that determine if a message matching the rule is added to a context: context-scope and context-id. The context-scope attribute acts as an early filter, selecting messages sent by the same process (${HOST}${PROGRAM}${PID} is identical), application (${HOST}${PROGRAM} is identical), or host, while the context-id actually adds the message to the context specified in the id. The context-id can be a simple string, or can contain macros or values extracted from the log messages for further filtering. If a message is added to a context, syslog-ng PE automatically adds the identifier of the context to the .classifier.context_id macro of the message.

NOTE: Message contexts are persistent and are not lost when syslog-ng PE is reloaded (SIGHUP), but are lost when syslog-ng PE is restarted.

Another parameter of a rule is the context-timeout attribute, which determines how long a context is stored, that is, how long syslog-ng PE waits for related messages to arrive.

Note the following points about timeout values:

  • When a new message is added to a context, syslog-ng PE will restart the timeout using the context-timeout set for the new message.

  • When calculating if the timeout has already expired or not, syslog-ng PE uses the timestamps of the incoming messages, not system time elapsed between receiving the two messages (unless the messages do not include a timestamp, or the keep-timestamp(no) option is set). That way syslog-ng PE can be used to process and correlate already existing log messages offline. However, the timestamps of the messages must be in chronological order (that is, a new message cannot be older than the one already processed), and if a message is newer than the current system time (that is, it seems to be coming from the future), syslog-ng PE will replace its timestamp with the current system time.

    Example: How syslog-ng PE calculates context-timeout

    Consider the following two messages:

    <38>1990-01-01T14:45:25 customhostname program6[1234]: program6 testmessage
    <38>1990-01-01T14:46:25 customhostname program6[1234]: program6 testmessage

    If the context-timeout is 10 seconds and syslog-ng PE receives the messages within 1 sec, the timeout event will occur immediately, because the difference of the two timestamps (60 sec) is larger than the timeout value (10 sec).

  • Avoid using unnecessarily long timeout values on high-traffic systems, as storing the contexts for many messages can require considerable memory. For example, if two related messages usually arrive within seconds, it is not needed to set the timeout to several hours.

Example: Using message correlation
<rule xml:id="..." context-id="ssh-session" context-timeout="86400" context-scope="process">
    <patterns>
        <pattern>Accepted @ESTRING:usracct.authmethod: @for @ESTRING:usracct.username: @from @ESTRING:usracct.device: @port @ESTRING:: @@ANYSTRING:usracct.service@</pattern>
    </patterns>
...
</rule>

For details on configuring message correlation, see the context-id, context-timeout, and context-scope attributes of pattern database rules.

Referencing earlier messages of the context

When using the <value> element in pattern database rules together with message correlation, you can also refer to fields and values of earlier messages of the context by adding the @<distance-of-referenced-message-from-the-current> suffix to the macro. For example, if there are three log messages in a context, and you are creating a generated message for the third log message, the ${HOST}@1 expression refers to the host field of the current (third) message in the context, the ${HOST}@2 expression refers to the host field of the previous (second) message in the context, ${PID}@3 to the PID of the first message, and so on. For example, the following message can be created from SSH login/logout messages (for details on generating new messages, see Triggering actions for identified messages): An SSH session for ${SSH_USERNAME}@1 from ${SSH_CLIENT_ADDRESS}@2 closed. Session lasted from ${DATE}@2 to ${DATE}.

Caution:

When referencing an earlier message of the context, always enclose the field name between braces, for example, ${PID}@3. The reference will not work if you omit the braces.

NOTE: To use a literal @ character in a template, use @@.

Example: Referencing values from an earlier message

The following action can be used to log the length of an SSH session (the time difference between a login and a logout message in the context):

<actions>
    <action>
        <message>
            <values>
                <value name="MESSAGE">An SSH session for ${SSH_USERNAME}@1 from ${SSH_CLIENT_ADDRESS}@2 closed. Session lasted from ${DATE}@2 to ${DATE} </value>
            </values>
        </message>
    </action>
</actions>

If you do not know in which message of the context contains the information you need, you can use the grep template function. For details, see grep.

Example: Using the grep template function

The following example selects the message of the context that has a username name-value pair with the root value, and returns the value of the auth_method name-value pair.

$(grep ("${username}" == "root") ${auth_method})

To perform calculations on fields that have numerical values, see Numerical operations.

Triggering actions for identified messages

The syslog-ng PE application can generate (trigger) messages automatically if certain events occur, for example, a specific log message is received, or the correlation timeout of a message expires. Basically, you can define messages for every pattern database rule that are emitted when a message matching the rule is received. Triggering messages is often used together with message correlation, but can also be used separately. When used together with message correlation, you can also create a new correlation context when a new message is received.

The generated message is injected into the same place where the db-parser() statement is referenced in the log path. To post the generated message into the internal() source instead, use the inject-mode() option in the definition of the parser.

Example: Sending triggered messages to the internal() source

To send the generated messages to the internal source, use the inject-mode(internal) option:

parser p_db {db-parser(
    file("mypatterndbfile.xml")
    inject-mode(internal)
);}; 

To inject the generated messages where the pattern database is referenced, use the inject-mode(pass-through) option:

parser p_db {db-parser(
    file("mypatterndbfile.xml")
    inject-mode(pass-through)
);}; 

The generated message must be configured in the pattern database rule. It is possible to create an entire message, use macros and values extracted from the original message with pattern database, and so on.

Example: Generating messages for pattern database matches

When inserted in a pattern database rule, the following example generates a message when a message matching the rule is received.

<actions>
    <action>
        <message>
            <values>
                <value name="MESSAGE">A log message from ${HOST} matched rule number $.classifier.rule_id</value>
            </values>
        </message>
    </action>
</actions>

To inherit the properties and values of the triggering message, set the inherit-properties attribute of the <message> element to TRUE. That way the triggering log message is cloned, including name-value pairs and tags. If you set any values for the message in the <action> element, they will override the values of the original message.

Example: Generating messages with inherited values

The following action generates a message that is identical to the original message, but its $PROGRAM field is set to overriding-original-program-name

<actions>
    <action>
        <message inherit-properties='TRUE'>
            <values>
                <value name="PROGRAM">overriding-original-program-name</value>
            </values>
        </message>
    </action>
</actions>
Example: Creating a new context from an action

In syslog-ng PE version 7 and newer, you can create a new context as an action. For details, see Element: create-context.

The following example creates a new context whenever the rule matches. The new context receives 1000 as ID, and program as scope, and the content set in the <message> element of the <create-context> element.

<rule provider='test' id='12' class='violation'>
  <patterns>
    <pattern>simple-message-with-action-to-create-context</pattern>
  </patterns>
  <actions>
    <action trigger='match'>
      <create-context context-id='1000' context-timeout='60' context-scope='program'>
        <message inherit-properties='context'>
          <values>
            <value name='MESSAGE'>context message</value>
          </values>
        </message>
      </create-context>
    </action>
  </actions>
</rule>

For details on configuring actions, see the description of the pattern database format.

Verwandte Dokumente

The document was helpful.

Bewertung auswählen

I easily found the information I needed.

Bewertung auswählen