Chatee ahora con Soporte
Chat con el soporte

One Identity Safeguard for Privileged Sessions 6.0.11 - Administration Guide

Preface Introduction The concepts of One Identity Safeguard for Privileged Sessions (SPS) Cloud deployment considerations The Welcome Wizard and the first login Basic settings
Supported web browsers and operating systems The structure of the web interface Network settings Configuring date and time System logging, SNMP and e-mail alerts Configuring system monitoring on SPS Data and configuration backups Archiving and cleanup Forwarding data to third-party systems Joining to One Identity Starling
User management and access control Managing One Identity Safeguard for Privileged Sessions (SPS)
Controlling One Identity Safeguard for Privileged Sessions (SPS): reboot, shutdown Managing Safeguard for Privileged Sessions (SPS) clusters Managing a high availability One Identity Safeguard for Privileged Sessions (SPS) cluster Upgrading One Identity Safeguard for Privileged Sessions (SPS) Managing the One Identity Safeguard for Privileged Sessions (SPS) license Accessing the One Identity Safeguard for Privileged Sessions (SPS) console Sealed mode Out-of-band management of One Identity Safeguard for Privileged Sessions (SPS) Managing the certificates used on One Identity Safeguard for Privileged Sessions (SPS)
General connection settings HTTP-specific settings ICA-specific settings RDP-specific settings SSH-specific settings Telnet-specific settings VMware Horizon View connections VNC-specific settings Indexing audit trails Using the Search interface Searching session data on a central node in a cluster Advanced authentication and authorization techniques Reports The One Identity Safeguard for Privileged Sessions (SPS) RPC API The One Identity Safeguard for Privileged Sessions (SPS) REST API One Identity Safeguard for Privileged Sessions (SPS) scenarios Troubleshooting One Identity Safeguard for Privileged Sessions (SPS) Using SPS with SPP Configuring external devices Using SCP with agent-forwarding Security checklist for configuring One Identity Safeguard for Privileged Sessions (SPS) Jumplists for in-product help LDAP user and group resolution in SPS Appendix: Deprecated features Glossary

Signing certificates on-the-fly

At a number of places, One Identity Safeguard for Privileged Sessions (SPS) can generate the server certificates on the fly. This technique is used for example in SSL-encrypted RDP sessions, RDP sessions that use Network Level Authentication (CredSSP), or SSH connections that use X.509-based authentication.

NOTE:

Note the following points about using signing CAs:

  • Signing CAs require a CA certificate permitted to sign certificates, and also the corresponding private key.

  • These CAs cannot be used to sign audit trails. For details on how to configure the certificates used to sign audit trails, see Digitally signing audit trails.

  • The version of the generated certificates will be the same as the version of the signing CA.

  • SPS ignores the CRL (from the crlDistributionPoints extension) of the signing CA when generating certificates. If you want to include a CRL in the generated certificates, you must set it manually. See the following steps for details.

To create a signing CA

  1. Navigate to Policies > Signing CAs and click .

  2. Select:
    • Local to use the built-in signing CA solution, and complete the following steps:
      1. Enter a name for the CA into the topmost field.

        Figure 159: Policies > Signing CAs — Creating Signing CAs - Local

      2. To upload a CA certificate and its private key, complete the following steps. Skip this step if you want to generate a CA on SPS.

        1. Click Edit in the CA X.509 certificate field and upload the certificate of the certificate authority. Alternatively, you can upload a certificate chain, where one member of the chain is the CA that will sign the certificates.

        2. Click Edit in the CA private key field and upload the private key of the certificate authority that will sign the certificates.

        3. (Optional) Enter the URL of the Certificate Revocation List (CRL) that you generated using your Certificate Authority in your Public Key Infrastructure (PKI) solution. The URL pointing to this CRL will be included in the certificate. This is the CRL information that will be shown to clients connecting to SPS.

          Note that the CRL list is not generated by the internal CA of SPS. The list must come from your own PKI solution.

        4. Click Commit.

      3. To generate a CA certificate on SPS, complete the following steps:

        1. Enter the Common Name for the CA certificate into the Common Name field. This name will be visible in the Issued By field of the certificates signed by this CA.

        2. Fill the other fields as required, then click Generate private key and certificate.

        3. Click Commit.

    • External Plugin to use an external signing CA plugin, and complete the following steps:
      1. Enter a name for the CA into the topmost field.

        Figure 160: Policies > Signing CAs — Creating Signing CAs - External Plugin

      2. From the Plugin field, select an uploaded external plugin using the drop-down menu.

        To be able to select from the drop-down menu, you must have an external plugin uploaded in Basic Settings > Plugins > Signing CAs.

        For more information about how to create an external Signing CA plugin, see Creating an external Signing CA.

      3. Optionally, fill the Configuration field as required by the uploaded plugin.

        The input you enter in the Configuration field is passed down to the plugin.

Creating an external Signing CA

Overview

The External Signing CA plugin's purpose is to generate certificate and private key pairs signed by a Certificate Authority. By using this type of plugin the certificate signing can be tailored to fit any custom requirement.

Details

The plugin is a ZIP file containing a MANIFEST and a main.py file.

The MANIFEST file

The MANIFEST file is a YAML file, and should conform to version 1.2 of the YAML specification. It should contain the following information about the plugin:

api: 1.0
type: signingca
name: MySigningCaPlugin
version: 1.0
description: My custom Signing CA

The type of the plugin must be signingca.

The main.py file

A Plugin class containing the following methods must be defined in the main.py file:

  • generate_for_addresses: generates a key/certificate pair for the given addresses (IP/DNS)
  • generate_for_username: generates a key/certificate pair for the given username
  • generate_for_subject: generates a key/certificate pair for the given subject values
Method arguments

Each method must take the following arguments:

  • generate_for_addresses:
    • addresses: {list of str} - contains either IP or DNS addresses for which the certificate shall be issued
    • keytype: {str} - contains a fixed value of 'RSA' or 'DSS' indicating the requested key type for the certificate
  • generate_for_username:
    • username {str} - contains the username for which the certificate shall be issued
    • keytype: {str} - contains a fixed value of 'RSA' or 'DSS' indicating the requested key type for the certificate
  • generate_for_subject:
    • subject {list of (str, str)} - contains the certificate subject as type-value pairs (tuples). Valid types are the following:
      • 'C' country name
      • 'ST' state or province name
      • 'L' locality name
      • 'O' orangization name
      • 'OU' organizational unit
      • 'CN' common name
      • 'emailAddress' email address
    • keytype: {str} - contains a fixed value of 'RSA' or 'DSS' indicating the requested key type for the certificate
Method return values

Each method returns a {dict} that must have the following keys:

  • key: {str} the generated key
  • chain: {list of str} a PEM encoded certificate chain containing the generated certificate as the first element
Example

The code below demonstrates a simple plugin that can sign certificates with a built in CA. By default it uses a pre-generated CA certificate and key to complete signing requests. To use a custom certificate, provide a certificate and a key in a python dict format in the configuration field.

Note: If you wish to try this sample code, you will need to provide a MANIFEST file (see below) and the following package dependencies in the .zip file alongside the plugin:

  • asn1crypto
  • certbuilder
  • oscrypto

main.py:

#!/usr/bin/env pluginwrapper3

#
# Copyright (c) One Identity
# All Rights Reserved.
#

from ast import literal_eval
from certbuilder import CertificateBuilder, pem_armor_certificate
from ipaddress import ip_address
from oscrypto import asymmetric

class Plugin(object):

    plugin_root_ca = """-----BEGIN CERTIFICATE-----
MIIDhjCCAm6gAwIBAgIIW+mOlk1Cu4swDQYJKoZIhvcNAQELBQAwYTELMAkGA1UE
BhMCSFUxETAPBgNVBAgMCEJ1ZGFwZXN0MREwDwYDVQQHDAhCdWRhcGVzdDEQMA4G
A1UECgwHQmFsYWJpdDEaMBgGA1UEAwwRQmFsYWJpdCBQbHVnaW4gQ0EwHhcNMTgx
MTEyMTQzMDQ2WhcNMTkxMTEyMTQzMDQ2WjBhMQswCQYDVQQGEwJIVTERMA8GA1UE
CAwIQnVkYXBlc3QxETAPBgNVBAcMCEJ1ZGFwZXN0MRAwDgYDVQQKDAdCYWxhYml0
MRowGAYDVQQDDBFCYWxhYml0IFBsdWdpbiBDQTCCASIwDQYJKoZIhvcNAQEBBQAD
ggEPADCCAQoCggEBAO73W0ONVwIaBJas+qUe0VBZ4rtk6PtzRNenZcBkTCkITuuF
DAQ3T1qLUsCyQ4uHMo+yKZUqR3HxbWGxS2l4IaHP6Hbna2kNEyYEsg16mGVUz6tc
D6bxFu3EpB7eU/OXh8RS8URIfZbLNrql1sKe7k1hpXUDS74Ra/avUIYKIpZ5sCjs
F6MBZWz5u3tNUa53xVmqgpnQ6pozN+OQ6k74DjK4xqWqJgTWcN6rxZ9k2voQYE3s
H66jl53q+Zl0D4w/AEW5W3OYNHJtx3tsc36sD2i0doqBCAAvflcSDEs7TXhfXSkC
qCBKyx8ics5EL9h49MDPGwDTehzwvXusz8LlxeMCAwEAAaNCMEAwDwYDVR0TAQH/
BAUwAwEB/zAdBgNVHQ4EFgQUyFWUMJli0q5CtJOp25IqK2M70oAwDgYDVR0PAQH/
BAQDAgEGMA0GCSqGSIb3DQEBCwUAA4IBAQCWoQCJPqfM4Sjg0R2O42yrE2GtQsXf
Qb3Dur+CefWLcvjI28t1xuj31khDgpNTwk4IVYrvarNX33C3tjYKgcimwWRMijbA
p8kZzFajOZSWC32CQtkWL79LLkJCTJB7b/4E41oNQPHtOoNCqFY+uQogP90qZ1w1
xlFX8ie/W3cuqhfzW6+/M3iCIwdjhBquvOo6mE3t2/lUcGXE20GayFsKnEmgpDJa
nxoG1+m+s5zCwDuukX8Lr1O7maTMwNVhm5P5QWeEPbGRN7yw+CfzcvPIbFYwnZ5x
XeC9Vtoj2Jbom8RV9uus8R5LfYBJ+HZh74wbGhIC2Kf9LrJTK7r92uVA
-----END CERTIFICATE-----"""

    plugin_root_ca_key = """-----BEGIN PRIVATE KEY-----
MIIEvwIBADANBgkqhkiG9w0BAQEFAASCBKkwggSlAgEAAoIBAQDu91tDjVcCGgSW
rPqlHtFQWeK7ZOj7c0TXp2XAZEwpCE7rhQwEN09ai1LAskOLhzKPsimVKkdx8W1h
sUtpeCGhz+h252tpDRMmBLINephlVM+rXA+m8RbtxKQe3lPzl4fEUvFESH2Wyza6
pdbCnu5NYaV1A0u+EWv2r1CGCiKWebAo7BejAWVs+bt7TVGud8VZqoKZ0OqaMzfj
kOpO+A4yuMalqiYE1nDeq8WfZNr6EGBN7B+uo5ed6vmZdA+MPwBFuVtzmDRybcd7
bHN+rA9otHaKgQgAL35XEgxLO014X10pAqggSssfInLORC/YePTAzxsA03oc8L17
rM/C5cXjAgMBAAECggEBAIucxpw76naW3tFtNG7eB2pLaZUUSq4F1VWtPlxd/MUI
Tpt5OuEHs3vx5CIixCWzkk2zyGmWrvEaHU6zN5ziC7wu7ODzKaTRd7uBiMkpM/oX
x9CU06w0NLIrbbt/J0ss36xKzRyYwY8lIM+Bbmx8UDuzbehkSY89PHd+S6xUJYsF
YmOVM00wx1N6yZGKHUV9GLRnysHb+DBbjGIcjDqmlsdyuAzlB7/DAeToLFNkZvzx
Qzza6whMILXS9Qp39dzn7nJuJywfoOAX2q5LgOrPise2QY1FuAy0GTfqvBDR1eGd
NwFW5YtH89l347AIDPgklKvKaii2iIw1ZEMf1AlX7mECgYEA+0JM9sToMgLhHJDj
cUsznVn3xzjDT/4O95LdAq1fVrn10wh/SwGCBBPMHQkV1nS70d//1aGctZLWk5+F
K3aPGV9Eas70mOGNcXdU1ITpFNuVfbKK8uH5NF/oEuoD4zRabunrj/zEk0Qu/D9v
pN4qEwJoV1SD/9HpfpaUG/xuBLECgYEA83mtE34zYTY2TLBr4HvoiWrFYoEpPldN
64oD+w1/D0Wd9hxCyzO3y2SmrBmmbzoawTckxD/VKndeRdV5dLlEnAV4F35bPsQl
dRJJEAAQPqqc1z4x6c2my27WPSbm4mIcvfTc65UFu4ovm/koywc96fwvpTX6JIN1
X8zHZ/tQaNMCgYEAl3yk3I9hk22K/ecZSiBWEUPCETpW/66kpX3FhKy085wQ61iP
LtDM69pn0QW+RduBtgsAu3PCAPN0LfManlbP9jMrE96NOHOdDNEusycjRHET04JH
JiM6VeqRCH5RM7ZH4+FjJh/3APc2AN3aWSOdaHKmKCkLoLyVs73jtG/ggTECgYBp
reCf22E1yrAa7WCFmYK/UqbGMMXUF1Ts7YT4zUzfNhpwHqgnRxV5pQBrJt8E3DWM
tACzZfmCazlyGkyTi27qQb10hRXZ0o1nmT45Qa3LZYaaLpa/otHI7xzyghYpIOjU
0pmpb4+DbWFo0+cO6N/I1ftgPGOMwbqKkHnk+kJWnQKBgQDQwITXna8OVjn86AQP
m36JHXi0RNVO/x4+b8T7nurU6XCPIzE0PxfVVSXXsbKTWlq48GIw9ZNpPKPSTCQy
fnYC+Pcu+4A+bfUwFk21khnN/fP5vyFlFhTrGneZeKWhUxv5iOqASEaizfOePmtj
et/4B9LUf9KQFstlhuIR4AP2OA==
-----END PRIVATE KEY-----"""

    def __init__(self, configuration=""):
        self.cert_x509name = {
            'country_name': 'HU',
            'state_or_province_name': 'Budapest',
            'locality_name': 'Budapest',
            'organization_name': 'One Identity',
            'common_name': '',
        }
        self.cert_alt_domains = []
        self.cert_alt_ips = []

        if configuration is not "":
            try:
                configdict = literal_eval(configuration)
                self.plugin_root_ca = configdict['ca']
                self.plugin_root_ca_key = configdict['key']
            except Exception:
                pass

        self.root_ca_certificate = asymmetric.load_certificate(bytes(self.plugin_root_ca, 'utf-8'))
        self.root_ca_key = asymmetric.load_private_key(bytes(self.plugin_root_ca_key, 'utf-8'))

    def _sign_certificate(self):
        end_entity_public_key, end_entity_private_key = asymmetric.generate_pair(self.cert_keytype, bit_size=2048)
        end_entity_private_key = asymmetric.dump_private_key(end_entity_private_key, None)
        end_entity_subject = self.cert_x509name

        builder = CertificateBuilder(
            end_entity_subject,
            end_entity_public_key
        )

        builder.subject_alt_domains = self.cert_alt_domains
        builder.subject_alt_ips = self.cert_alt_ips
        builder.issuer = self.root_ca_certificate
        end_entity_certificate = builder.build(self.root_ca_key)
        end_entity_certificate = pem_armor_certificate(end_entity_certificate)
        return end_entity_certificate, end_entity_private_key

    _subject_type_mapping = {
        'C': 'country_name',
        'ST': 'state_or_province_name',
        'L': 'locality_name',
        'O': 'organization_name',
        'OU': 'organizational_unit_name',
        'CN': 'common_name',
        'emailAddress': 'email_address',
    }

    def _set_certificate_x509_name(self, x509name):
        for (t, v) in x509name:
            self.cert_x509name[self._subject_type_mapping[t]] = v

    def _set_certificate_keytype(self, keytype):
        # Certbuilder lists DSS key as DSA so we have to translate the string here
        if keytype == "dss": keytype = "dsa"
        if keytype not in ['dsa', 'rsa']:
            raise ValueError('Certificate type should be either \'rsa\' or \'dss\'')
        else:
            self.cert_keytype = keytype

    def _set_certificate_cn(self, cn):
        self.cert_x509name['common_name'] = cn

    def _set_certificate_addresses(self, addresses):
        for address in addresses:
            try:
                ip_address(address)
                self.cert_alt_ips.append(address)
            except ValueError:
                self.cert_alt_domains.append(address)

    def _build_response(self, cert, key):
        return {'key': key.decode('ascii'), 'chain': [cert.decode('ascii'), self.plugin_root_ca]}

    def generate_for_addresses(self, addresses: list, keytype: str):
        self._set_certificate_keytype(keytype)
        self._set_certificate_addresses(addresses)
        self._set_certificate_cn(addresses[0])
        return self._build_response(
            *self._sign_certificate()
        )

    def generate_for_username(self, username: str, keytype: str):
        self._set_certificate_keytype(keytype)
        self._set_certificate_cn(username)
        return self._build_response(
            *self._sign_certificate()
        )

    def generate_for_subject(self, x509name: list, keytype: str):
        self._set_certificate_keytype(keytype)
        self._set_certificate_x509_name(x509name)
        return self._build_response(
            *self._sign_certificate()
        )

Use the following snippet as the MANIFEST file:

# Name of the plugin, may contain [a-zA-Z0-9]
name: HelloSigningCaPlugin

# Version of the plugin, only for display purposes
version: 0.1

# Type of the plugin - this is a signingca plugin
type: signingca

# API version of the SCB the plugin was written for, in major.minor format
api: 1.0

# Free form description.
description: This is an example plugin used for testing.

# Entry point for the plugin (also for running with python3)
entry_point: main.py

Creating a Local User Database

Local User Databases are available for HTTP, RDP, SSH and Telnet protocols, and can be used to authenticate the clients to credentials that are locally available on One Identity Safeguard for Privileged Sessions (SPS). Such credentials include passwords and public keys. Local User Databases are most commonly used in inband gateway authentication scenarios.

NOTE:

To store credentials on SPS and use them to authenticate on the server, use a local Credential Store. For details, see Using credential stores for server-side authentication.

To create a Local User Database

  1. Navigate to Policies > Local User Databases and click .

  2. Enter the name of the Local User Database.

  3. Click to add entries.

    Figure 161: Policies > Local User Databases — Mapping keys

  4. Enter the name of the user into the Username field.

    NOTE:

    If you also use Usermapping policies, enter the username that the client will use on the server side. If you also use gateway authentication, the gateway username can be used as well.

  5. If you use public-key based authentication on the client side, click the icon in the Public Keys field, and upload the public key of the client.

    SPS will verify that a client trying to use the username set in Step 3 is authenticating itself with the private key that corresponds to the uploaded public key or certificate.

    One Identity recommends using 2048-bit RSA keys (or stronger).

  6. Repeat the above steps to add other users as required.

  7. Click Commit.

  8. Navigate to the Authentication Policies tab of the respective protocol and select the Local User Database there.

Configuring cleanup for the One Identity Safeguard for Privileged Sessions (SPS) connection database

One Identity Safeguard for Privileged Sessions (SPS) can automatically archive audit trails older than a specified retention time. However, the metadata of the corresponding connections is not deleted from the SPS connection database. Deleting the stored data about old connections decreases the size of the database, making searches faster, and might be also required by certain policies or regulations. The period after metadata is deleted can be specified individually for the different protocols, (for example, data about SSH connections can be stored longer than other connections) and also for every connection policy.

To configure SPS to delete the metadata of old connections for a particular protocol

  1. Navigate to the Global Options page of the respective protocol, for example, to SSH Control > Global Options.

  2. Figure 162: <Protocol name> Control > Global Options — Configuring connection database cleanup for a protocol

    Enter how long SPS (in days) should keep the metadata into the Delete search metadata from SPS after field. For example, if you specify 365, SPS will delete the data of connections older than a year. Enter zero (0) to keep the data indefinitely (this is also the default behavior of SPS).

    NOTE:

    The database cleanup occurs once a day at 22:01 PM.

    The time you specify in the Delete search metadata from SPS after field cannot be shorter than the Delete data from SPS after field set for the Archive policies used in the connections of this protocol. Note that since the database cleanup happens once a day at 22:01 PM, if you specify the same retention time, for example, 1 day in the Delete data from SPS after field, ensure that the archiving or cleanup is set to start before 22:01 PM.

    The time you specify in the Delete search metadata from SPS after field cannot be shorter than the Delete search metadata from SPS after field set in the individual connection policies of this protocol.

  3. Click Commit and repeat the previous step for other protocols if needed.

  4. Figure 163: <Protocol name> Control > Connections — Configuring connection database cleanup for a connection

    To delete the metadata of certain connections earlier than the time set in the Global Options > Delete search metadata from SPS after field of the protocol, navigate to the particular connection policy, and enter how long SPS (in days) should keep the metadata of the sessions of this connection policy into the Delete search metadata from SPS after field. Enter zero (0) to use the settings of the protocol (this is also the default behavior of SPS).

    NOTE:

    The time you specify in the Delete search metadata from SPS after field cannot be shorter than the Delete data from SPS after field set for the Archive policies used in the connections of this protocol. Note that since the database cleanup happens once a day at 22:01 PM, if you specify the same retention time, for example, 1 day in the Delete data from SPS after field, ensure that the archiving or cleanup is set to start before 22:01 PM.

  5. Click Commit and repeat the previous step for other connections if needed.

    Expected outcome:

    Every day SPS deletes the metadata of connections older than the given cleanup time from the connection database.

Documentos relacionados

The document was helpful.

Seleccionar calificación

I easily found the information I needed.

Seleccionar calificación