Tchater maintenant avec le support
Tchattez avec un ingénieur du support

One Identity Safeguard for Privileged Sessions 7.5.1 - Administration Guide

Preface Introduction The concepts of One Identity Safeguard for Privileged Sessions (SPS)
The philosophy of One Identity Safeguard for Privileged Sessions (SPS) Policies Credential Stores Plugin framework Indexing Supported protocols and client applications Modes of operation Connecting to a server through One Identity Safeguard for Privileged Sessions (SPS) Archive and backup concepts Maximizing the scope of auditing IPv6 in One Identity Safeguard for Privileged Sessions (SPS) SSH host keys Authenticating clients using public-key authentication in SSH The gateway authentication process Four-eyes authorization Network interfaces High Availability support in One Identity Safeguard for Privileged Sessions (SPS) Versions and releases of One Identity Safeguard for Privileged Sessions (SPS) Accessing and configuring One Identity Safeguard for Privileged Sessions (SPS)
Cloud deployment considerations The Welcome Wizard and the first login Basic settings
Supported web browsers The structure of the web interface Network settings Configuring date and time System logging, SNMP and e-mail alerts Configuring system monitoring on SPS Data and configuration backups Archiving Cleaning up audit data Using plugins Forwarding data to third-party systems Starling integration
User management and access control
Login settings Managing One Identity Safeguard for Privileged Sessions (SPS) users locally Setting password policies for local users Managing local user groups Managing One Identity Safeguard for Privileged Sessions (SPS) users from an LDAP database Authenticating users to a RADIUS server Authenticating users with X.509 certificates Authenticating users with SAML2 Managing user rights and usergroups Creating rules for restricting access to search audit data Displaying the privileges of users and user groups Listing and searching configuration changes
Managing One Identity Safeguard for Privileged Sessions (SPS)
Controlling One Identity Safeguard for Privileged Sessions (SPS): reboot, shutdown Managing One Identity Safeguard for Privileged Sessions (SPS) clusters Managing a High Availability One Identity Safeguard for Privileged Sessions (SPS) cluster Upgrading One Identity Safeguard for Privileged Sessions (SPS) Managing the One Identity Safeguard for Privileged Sessions (SPS) license Accessing the One Identity Safeguard for Privileged Sessions (SPS) console Sealed mode Out-of-band management of One Identity Safeguard for Privileged Sessions (SPS) Managing the certificates used on One Identity Safeguard for Privileged Sessions (SPS)
General connection settings HTTP-specific settings ICA-specific settings MSSQL-specific settings RDP-specific settings SSH-specific settings Using Sudo with SPS Telnet-specific settings VMware Horizon View connections VNC-specific settings Indexing audit trails Using the Search interface Advanced authentication and authorization techniques Reports The One Identity Safeguard for Privileged Sessions (SPS) REST API One Identity Safeguard for Privileged Sessions (SPS) scenarios Troubleshooting One Identity Safeguard for Privileged Sessions (SPS)
Network troubleshooting Gathering data about system problems Viewing logs on One Identity Safeguard for Privileged Sessions (SPS) Changing log verbosity level of One Identity Safeguard for Privileged Sessions (SPS) Collecting logs and system information for error reporting Collecting logs and system information of the boot process for error reporting Support hotfixes Status history and statistics Troubleshooting a One Identity Safeguard for Privileged Sessions (SPS) cluster Understanding One Identity Safeguard for Privileged Sessions (SPS) RAID status Restoring One Identity Safeguard for Privileged Sessions (SPS) configuration and data VNC is not working with TLS Configuring the IPMI from the BIOS after losing IPMI password Incomplete TSA response received Using UPN usernames in audited SSH connections
Using SPS with SPP Configuring external devices Using SCP with agent-forwarding Security checklist for configuring One Identity Safeguard for Privileged Sessions (SPS) Jumplists for in-product help Configuring SPS to use an LDAP backend Glossary

Uploading decryption keys to the external indexer

If the audit trails you want to index are encrypted, complete the following steps to make the decryption keys available for the indexer.

To make the decryption keys available for the external indexer

  1. Obtain the RSA private key and copy it to the external indexer's host.

  2. Use the indexer-keys-json utility to transform the private key to the required JSON format. When executed, the script asks for the path to the private key, and the password of the private key. After the conversion, the password is removed.

    The utility automatically adds the private key to the /etc/indexer/indexer-keys.cfg keystore file. If you want to use a different keystore file, use the --keystore argument to specify another file. If the keystore already includes the private key you want to add, it will be ignored.

    1. In the /opt/external-indexer/usr/bin/ folder, issue the following command: indexer-keys-json

    2. Provide the absolute path to the private key. Alternatively, you can include this information as a parameter: indexer-keys-json --private-key <path-to-private-key>

    3. If the key is password protected, enter the password to the private key.

    4. To add additional keys, re-run the indexer-keys-json command.

  3. You can now start the indexer service. For more information, see Starting the external indexer.

Configuring a hardware security module (HSM) or smart card to integrate with external indexer

It is possible to use a hardware security module (HSM) or a smart card to store the decryption keys required for decrypting audit trails. An HSM or a smart card is a tamper-resistant physical, software, or cloud solution that can securely store digital keys used for authentication.

The main steps of configuring a hardware security module (HSM) or smart card to integrate with an external indexer are as follows:

  1. Set up and test the environment.

  2. Encrypt the PKCS#11 PIN.

To see examples of how to configure various HSM or smart card solutions that you wish to integrate with your external indexer(s), consult the following sections:

Detailed information about this topic

Setting up and testing the environment

To access an HSM or smart card with the external indexer, a PKCS#11 shared library plugin must be used. In most cases, these libraries also need a background daemon or environment variables set. The PKCS#11 library must be accessible to the external indexer with a proper environment.

To set up the environment and test it, complete the following steps.

  1. Load the environment for the indexer commands:

    source /etc/indexer/external-indexer.env
  2. Test your environment.

    • Option #1: Use the pkcs11-tool to test your environment:

      1. List the available slots.

        pkcs11-tool --modul <path-to-pkcs11-library> -L
      2. List the objects in a slot.

        pkcs11-tool --modul <path-to-pkcs11-library> -l --slot <id> -O
    • Option #2: Use the indexerworker with the log level set to dump to see the available keys:

      indexerworker -l -v 7 --pkcs11-lib <path-to-pkcs11-library> --pkcs11-slot-id <id> --pkcs11-pin <pin>
  3. Assuming that the environment is ready, the external indexer must be configured to use the PKCS#11 library. To do so, edit /etc/indexer/indexerworker.cfg as follows:

    ...
    "settings": {
      "pkcs11": {
             "custom_password": false
             "slots": [
               {
                 "library": "<path-to-pkcs11-library>",
                 "slot_id": <slot-number>,
                 "pin": "<your-encrypted-PIN>"
               }
             ]
       }
    }
    ...

Encrypting a PKCS#11 PIN

The PKCS#11 PIN(s) must be protected by additional encryption. The indexerconfigcrypter tool must be used to encrypt the PIN(s).

To encrypt the PIN(s)

  1. Encrypt the PIN.

    The PINs can be encrypted with a custom passphrase or a default one is used if no custom passphrase is provided. A custom passphrase is more secure, but interaction is needed to start or restart the external-indexer service. Using a custom passphrase is supported on hosts running CentOS 7 or later.

    Issue either of the following commands:

    • Using a default password (CentOS 6 or 7): indexerconfigcrypter --input <your-PIN>

    • Using a custom password (CentOS 7 or later): indexerconfigcrypter --input <your-PIN> --password

    It is possible to configure multiple slots. In that case, the PINs must be encrypted using the same passphrase.

  2. Update the "pkcs11" object in the indexerworker.cfg file.

    The encrypted PINs must be stored in the "pin" field of the configuration file (in the example, a SoftHSM is used):

    ...
       "pkcs11": {
           "custom_password": true
           "slots": [
             {
               "library": "/usr/lib/softhsm/libsofthsm.so",
               "slot_id": 0,
               "pin": "<your-encrypted-PIN>"
             }
           ]
       }
    ...
Documents connexes

The document was helpful.

Sélectionner une évaluation

I easily found the information I needed.

Sélectionner une évaluation