Chat now with support
Chat with Support

syslog-ng Open Source Edition 3.25 - Administration Guide

Preface Introduction to syslog-ng The concepts of syslog-ng Installing syslog-ng The syslog-ng OSE quick-start guide The syslog-ng OSE configuration file source: Read, receive, and collect log messages
How sources work default-network-drivers: Receive and parse common syslog messages internal: Collecting internal messages file: Collecting messages from text files wildcard-file: Collecting messages from multiple text files linux-audit: Collecting messages from Linux audit logs network: Collecting messages using the RFC3164 protocol (network() driver) nodejs: Receiving JSON messages from nodejs applications mbox: Converting local email messages to log messages osquery: Collect and parse osquery result logs pipe: Collecting messages from named pipes pacct: Collecting process accounting logs on Linux program: Receiving messages from external applications python: writing server-style Python sources python-fetcher: writing fetcher-style Python sources snmptrap: Read Net-SNMP traps sun-streams: Collecting messages on Sun Solaris syslog: Collecting messages using the IETF syslog protocol (syslog() driver) system: Collecting the system-specific log messages of a platform systemd-journal: Collecting messages from the systemd-journal system log storage systemd-syslog: Collecting systemd messages using a socket tcp, tcp6, udp, udp6: Collecting messages from remote hosts using the BSD syslog protocol— OBSOLETE unix-stream, unix-dgram: Collecting messages from UNIX domain sockets stdin: Collecting messages from the standard input stream
destination: Forward, send, and store log messages
amqp: Publishing messages using AMQP collectd: sending metrics to collectd elasticsearch2: Sending messages directly to Elasticsearch version 2.0 or higher (DEPRECATED) elasticsearch-http: Sending messages to Elasticsearch HTTP Bulk API file: Storing messages in plain-text files graphite: Sending metrics to Graphite Sending logs to Graylog hdfs: Storing messages on the Hadoop Distributed File System (HDFS) Posting messages over HTTP http: Posting messages over HTTP without Java kafka: Publishing messages to Apache Kafka (Java implementation) kafka: Publishing messages to Apache Kafka (C implementation, using the librdkafka client) loggly: Using Loggly logmatic: Using Logmatic.io mongodb: Storing messages in a MongoDB database network: Sending messages to a remote log server using the RFC3164 protocol (network() driver) osquery: Sending log messages to osquery's syslog table pipe: Sending messages to named pipes program: Sending messages to external applications pseudofile() python: writing custom Python destinations redis: Storing name-value pairs in Redis riemann: Monitoring your data with Riemann slack: Sending alerts and notifications to a Slack channel smtp: Generating SMTP messages (email) from logs snmp: Sending SNMP traps Splunk: Sending log messages to Splunk sql: Storing messages in an SQL database stomp: Publishing messages using STOMP syslog: Sending messages to a remote logserver using the IETF-syslog protocol syslog-ng(): Forward logs to another syslog-ng node tcp, tcp6, udp, udp6: Sending messages to a remote log server using the legacy BSD-syslog protocol (tcp(), udp() drivers) Telegram: Sending messages to Telegram unix-stream, unix-dgram: Sending messages to UNIX domain sockets usertty: Sending messages to a user terminal: usertty() destination Write your own custom destination in Java or Python Client-side failover
log: Filter and route log messages using log paths, flags, and filters Global options of syslog-ng OSE TLS-encrypted message transfer template and rewrite: Format, modify, and manipulate log messages parser: Parse and segment structured messages db-parser: Process message content with a pattern database (patterndb) Correlating log messages Enriching log messages with external data Statistics of syslog-ng Multithreading and scaling in syslog-ng OSE Troubleshooting syslog-ng Best practices and examples The syslog-ng manual pages Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd) License Glossary

Using parser results in filters and templates

The results of message classification and parsing can be used in custom filters and templates, for example, in file and database templates. The following built-in macros allow you to use the results of the classification:

  • The .classifier.class macro contains the class assigned to the message (for example, violation, security, or unknown).

  • The .classifier.rule_id macro contains the identifier of the message pattern that matched the message.

  • The .classifier.context_id macro contains the identifier of the context for messages that were correlated. For details on correlating messages, see Correlating log messages using pattern databases.

Example: Using classification results for filtering messages

To filter on a specific message class, create a filter that checks the .classifier_class macro, and use this filter in a log statement.

filter fi_class_violation {
    match(
        "violation"
        value(".classifier.class")
        type("string")
    );
};
log {
    source(s_all);
    parser(pattern_db);
    filter(fi_class_violation);
    destination(di_class_violation);
};

Filtering on the unknown class selects messages that did not match any rule of the pattern database. Routing these messages into a separate file allows you to periodically review new or unknown messages.

To filter on messages matching a specific classification rule, create a filter that checks the .classifier.rule_id macro. The unique identifier of the rule (for example, e1e9c0d8-13bb-11de-8293-000c2922ed0a) is the id attribute of the rule in the XML database.

filter fi_class_rule {
    match(
        "e1e9c0d8-13bb-11de-8293-000c2922ed0a"
        value(".classifier.rule_id")
        type("string")
    );
};

Pattern database rules can assign tags to messages. These tags can be used to select tagged messages using the tags() filter function.

NOTE:

The syslog-ng OSE application automatically adds the class of the message as a tag using the .classifier.<message-class> format. For example, messages classified as "system" receive the .classifier.system tag. Use the tags() filter function to select messages of a specific class.

filter f_tag_filter {tags(".classifier.system");};

The message-segments parsed by the pattern parsers can also be used as macros as well. To accomplish this, you have to add a name to the parser, and then you can use this name as a macro that refers to the parsed value of the message.

Example: Using pattern parsers as macros

For example, you want to parse messages of an application that look like "Transaction: <type>.", where <type> is a string that has different values (for example, refused, accepted, incomplete, and so on). To parse these messages, you can use the following pattern:

'Transaction: @ESTRING::.@'

Here the @ESTRING@ parser parses the message until the next full stop character. To use the results in a filter or a filename template, include a name in the parser of the pattern, for example:

'Transaction: @ESTRING:TRANSACTIONTYPE:.@'

After that, add a custom template to the log path that uses this template. For example, to select every accepted transaction, use the following custom filter in the log path:

match("accepted" value("TRANSACTIONTYPE"));
NOTE:

The above macros can be used in database columns and filename templates as well, if you create custom templates for the destination or logspace.

Use a consistent naming scheme for your macros, for example, APPLICATIONNAME_MACRONAME.

Downloading sample pattern databases

To simplify the building of pattern databases, One Identity has released (and will continue to release) sample databases. You can download sample pattern databases from the One Identity GitHub page (older samples are temporarily available here).

Note that these pattern databases are only samples and experimental databases. They are not officially supported, and may or may not work in your environment.

The syslog-ng pattern databases are available under the Creative Commons Attribution-Share Alike 3.0 (CC by-SA) license. This includes every pattern database written by community contributors or the One Identity staff. It means that:

  • You are free to use and modify the patterns for your needs.

  • If you redistribute the pattern databases, you must distribute your modifications under the same license.

  • If you redistribute the pattern databases, you must make it obvious that the source of the original syslog-ng pattern databases is the One Identity GitHub page.

For legal details, the full text of the license is available here.

If you create patterns that are not available in the GitHub repository, consider sharing them with us and the syslog-ng community. To do this, open a GitHub issue, or send them to the syslog-ng mailing list.

Correlating log messages using pattern databases

The syslog-ng OSE application can correlate log messages identified using pattern databases. Alternatively, you can also correlate log messages using the grouping-by() parser. For details, see Correlating messages using the grouping-by() parser.

Log messages are supposed to describe events, but applications often separate information about a single event into different log messages. For example, the Postfix email server logs the sender and recipient addresses into separate log messages, or in case of an unsuccessful login attempt, the OpenSSH server sends a log message about the authentication failure, and the reason of the failure in the next message. Of course, messages that are not so directly related can be correlated as well, for example, login-logout messages, and so on.

To correlate log messages with syslog-ng OSE, you can add messages into message-groups called contexts. A context consists of a series of log messages that are related to each other in some way, for example, the log messages of an SSH session can belong to the same context. As new messages come in, they may be added to a context. Also, when an incoming message is identified it can trigger actions to be performed, for example, generate a new message that contains all the important information that was stored previously in the context.

(For details on triggering actions and generating messages, see Triggering actions for identified messages.)

There are two attributes for pattern database rules that determine if a message matching the rule is added to a context: context-scope and context-id. The context-scope attribute acts as an early filter, selecting messages sent by the same process (${HOST}${PROGRAM}${PID} is identical), application (${HOST}${PROGRAM} is identical), or host, while the context-id actually adds the message to the context specified in the id. The context-id can be a simple string, or can contain macros or values extracted from the log messages for further filtering. Starting with syslog-ng OSE version 3.5, if a message is added to a context, syslog-ng OSE automatically adds the identifier of the context to the .classifier.context_id macro of the message.

NOTE:

Message contexts are persistent and are not lost when syslog-ng OSE is reloaded (SIGHUP), but are lost when syslog-ng OSE is restarted.

Another parameter of a rule is the context-timeout attribute, which determines how long a context is stored, that is, how long syslog-ng OSE waits for related messages to arrive.

Note the following points about timeout values:

  • When a new message is added to a context, syslog-ng OSE will restart the timeout using the context-timeout set for the new message.

  • When calculating if the timeout has already expired or not, syslog-ng OSE uses the timestamps of the incoming messages, not system time elapsed between receiving the two messages (unless the messages do not include a timestamp, or the keep-timestamp(no) option is set). That way syslog-ng OSE can be used to process and correlate already existing log messages offline. However, the timestamps of the messages must be in chronological order (that is, a new message cannot be older than the one already processed), and if a message is newer than the current system time (that is, it seems to be coming from the future), syslog-ng OSE will replace its timestamp with the current system time.

    Example: How syslog-ng OSE calculates context-timeout

    Consider the following two messages:

    <38>1990-01-01T14:45:25 customhostname program6[1234]: program6 testmessage
    <38>1990-01-01T14:46:25 customhostname program6[1234]: program6 testmessage

    If the context-timeout is 10 seconds and syslog-ng OSE receives the messages within 1 sec, the timeout event will occour immediately, because the difference of the two timestamp (60 sec) is larger than the timeout value (10 sec).

  • Avoid using unnecessarily long timeout values on high-traffic systems, as storing the contexts for many messages can require considerable memory. For example, if two related messages usually arrive within seconds, it is not needed to set the timeout to several hours.

Example: Using message correlation
<rule xml:id="..." context-id="ssh-session" context-timeout="86400" context-scope="process">
    <patterns>
        <pattern>Accepted @ESTRING:usracct.authmethod: @for @ESTRING:usracct.username: @from @ESTRING:usracct.device: @port @ESTRING:: @@ANYSTRING:usracct.service@</pattern>
    </patterns>
...
</rule>

For details on configuring message correlation, see the context-id, context-timeout, and context-scope attributes of pattern database rules.

Referencing earlier messages of the context

When using the <value> element in pattern database rules together with message correlation, you can also refer to fields and values of earlier messages of the context by adding the @<distance-of-referenced-message-from-the-current> suffix to the macro. For example, if there are three log messages in a context, and you are creating a generated message for the third log message, the ${HOST}@1 expression refers to the host field of the current (third) message in the context, the ${HOST}@2 expression refers to the host field of the previous (second) message in the context, ${PID}@3 to the PID of the first message, and so on. For example, the following message can be created from SSH login/logout messages (for details on generating new messages, see Triggering actions for identified messages): An SSH session for ${SSH_USERNAME}@1 from ${SSH_CLIENT_ADDRESS}@2 closed. Session lasted from ${DATE}@2 to ${DATE}.

Caution:

When referencing an earlier message of the context, always enclose the field name between braces, for example, ${PID}@3. The reference will not work if you omit the braces.

NOTE:

To use a literal @ character in a template, use @@.

Example: Referencing values from an earlier message

The following action can be used to log the length of an SSH session (the time difference between a login and a logout message in the context):

<actions>
    <action>
        <message>
            <values>
                <value name="MESSAGE">An SSH session for ${SSH_USERNAME}@1 from ${SSH_CLIENT_ADDRESS}@2 closed. Session lasted from ${DATE}@2 to ${DATE} </value>
            </values>
        </message>
    </action>
</actions>

If you do not know in which message of the context contains the information you need, you can use the grep, the context-lookup, or the context-values template functions.

Example: Using the grep template function

The following example selects the message of the context that has a username name-value pair with the root value, and returns the value of the auth_method name-value pair.

$(grep ("${username}" == "root") ${auth_method})

To perform calculations on fields that have numerical values, see Numerical operations.

Related Documents

The document was helpful.

Select Rating

I easily found the information I needed.

Select Rating