Chatta subito con l'assistenza
Chat con il supporto

syslog-ng Premium Edition 7.0.29 - Administration Guide

Preface Introduction to syslog-ng The concepts of syslog-ng Installing syslog-ng PE The syslog-ng PE quick-start guide The syslog-ng PE configuration file Collecting log messages — sources and source drivers
How sources work default-network-drivers: Receive and parse common syslog messages internal: Collecting internal messages file: Collecting messages from text files google-pubsub: collecting messages from the Google Pub/Sub messaging service wildcard-file: Collecting messages from multiple text files linux-audit: Collecting messages from Linux audit logs mssql, oracle, sql: collecting messages from an SQL database network: Collecting messages using the RFC3164 protocol (network() driver) office365: Fetching logs from Office 365 osquery: Collect and parse osquery result logs pipe: Collecting messages from named pipes program: Receiving messages from external applications python: writing server-style Python sources python-fetcher: writing fetcher-style Python sources snmptrap: Read Net-SNMP traps syslog: Collecting messages using the IETF syslog protocol (syslog() driver) system: Collecting the system-specific log messages of a platform systemd-journal: Collecting messages from the systemd-journal system log storage systemd-syslog: Collecting systemd messages using a socket tcp, tcp6, udp, udp6: Collecting messages from remote hosts using the BSD syslog protocol udp-balancer: Receiving UDP messages at very high rate unix-stream, unix-dgram: Collecting messages from UNIX domain sockets windowsevent: Collecting Windows event logs
Sending and storing log messages — destinations and destination drivers
elasticsearch2: Sending messages directly to Elasticsearch version 2.0 or higher (DEPRECATED) elasticsearch-http: Sending messages to Elasticsearch HTTP Event Collector file: Storing messages in plain-text files google_pubsub(): Sending logs to the Google Cloud Pub/Sub messaging service hdfs: Storing messages on the Hadoop Distributed File System (HDFS) http: Posting messages over HTTP without Java kafka(): Publishing messages to Apache Kafka (Java implementation) (DEPRECATED) kafka-c(): Publishing messages to Apache Kafka using the librdkafka client (C implementation) logstore: Storing messages in encrypted files mongodb: Storing messages in a MongoDB database network: Sending messages to a remote log server using the RFC3164 protocol (network() driver) pipe: Sending messages to named pipes program: Sending messages to external applications python: writing custom Python destinations sentinel(): Sending logs to the Microsoft Azure Sentinel cloud snmp: Sending SNMP traps smtp: Generating SMTP messages (email) from logs splunk-hec: Sending messages to Splunk HTTP Event Collector sql(): Storing messages in an SQL database stackdriver: Sending logs to the Google Stackdriver cloud syslog: Sending messages to a remote logserver using the IETF-syslog protocol syslog-ng(): Forward logs to another syslog-ng node tcp, tcp6, udp, udp6: Sending messages to a remote log server using the legacy BSD-syslog protocol (tcp(), udp() drivers) unix-stream, unix-dgram: Sending messages to UNIX domain sockets usertty: Sending messages to a user terminal — usertty() destination Client-side failover
Routing messages: log paths, flags, and filters Global options of syslog-ng PE TLS-encrypted message transfer Advanced Log Transfer Protocol Reliability and minimizing the loss of log messages Manipulating messages parser: Parse and segment structured messages Processing message content with a pattern database Correlating log messages Enriching log messages with external data Monitoring statistics and metrics of syslog-ng Multithreading and scaling in syslog-ng PE Troubleshooting syslog-ng Best practices and examples The syslog-ng manual pages Glossary

internal: Collecting internal messages

All messages generated internally by syslog-ng use this special source. To collect warnings, errors and notices from syslog-ng itself, include this source in one of your source statements.

internal()

The syslog-ng application will issue a warning upon startup if none of the defined log paths reference this driver.

Example: Using the internal() driver
source s_local { internal(); };
The syslog-ng PE application sends the following message types from the internal() source
  • fatal: Priority value: critical (2), Facility value: syslog (5)

  • error: Priority value: error (3), Facility value: syslog (5)

  • warning: Priority value: warning (4), Facility value: syslog (5)

  • notice: Priority value: notice (5), Facility value: syslog (5)

  • info: Priority value: info (6), Facility value: syslog (5)

internal() source options

The internal() driver has the following options:

host-override()
Type: string
Default:

Description: Replaces the ${HOST} part of the message with the parameter string.

log-iw-size()
Type: number
Default: 100

Description: The size of the initial window, this value is used during flow control. For details on flow control, see Managing incoming and outgoing messages with flow-control.

normalize-hostnames()
Accepted values: yes | no
Default: no

Description: If enabled (normalize-hostnames(yes)), syslog-ng PE converts the hostnames to lowercase.

program-override()
Type: string
Default:

Description: Replaces the ${PROGRAM} part of the message with the parameter string. For example, to mark every message coming from the kernel, include the program-override("kernel") option in the source containing /proc/kmsg.

tags()
Type: string
Default:

Description: Label the messages received from the source with custom tags. Tags must be unique, and enclosed between double quotes. When adding multiple tags, separate them with comma, for example, tags("dmz", "router"). This option is available only in syslog-ng 3.1 and later.

use-fqdn()
Type: yes or no
Default: no

Description: Add Fully Qualified Domain Name instead of short hostname. This option can be specified globally, and per-source as well. The local setting of the source overrides the global option if available.

file: Collecting messages from text files

Collects log messages from plain-text files, for example, from the logfiles of an Apache webserver. If you want to use wildcards in the filename, use the wildcard-file() source.

The syslog-ng application notices if a file is renamed or replaced with a new file, so it can correctly follow the file even if logrotation is used. When syslog-ng is restarted, it records the position of the last sent log message in the /opt/syslog-ng/var/syslog-ng.persist file, and continues to send messages from this position after the restart.

The file driver has a single required parameter specifying the file to open. If you want to use wildcards in the filename, use the wildcard-file() source. For the list of available optional parameters, see file() source options.

Caution:

Hazard of data loss! If your log files are on an NFS-mounted network file system, see Using syslog-ng PE with NFS or CIFS (or SMB) file system for log files.

Declaration
file("filename");
Example: Using the file() driver
source s_file {
    file("/var/log/messages");
};
Example: Tailing files

The following source checks the access.log file every second for new messages.

source s_tail {
    file("/var/log/apache/access.log"
        follow-freq(1)
        flags(no-parse)
    );
};

NOTE: If the message does not have a proper syslog header, syslog-ng treats messages received from files as sent by the kern facility. Use the default-facility() and default-priority() options in the source definition to assign a different facility if needed.

Notes on reading kernel messages

Note the following points when reading kernel messages on various platforms.

  • The kernel usually sends log messages to a special file (/dev/kmsg on BSDs, /proc/kmsg on Linux). The file() driver reads log messages from such files. The syslog-ng application can periodically check the file for new log messages if the follow-freq() option is set.

  • On Linux, the klogd daemon can be used in addition to syslog-ng to read kernel messages and forward them to syslog-ng. klogd used to preprocess kernel messages to resolve symbols and so on, but as this is deprecated by ksymoops there is really no point in running both klogd and syslog-ng in parallel. Also note that running two processes reading /proc/kmsg at the same time might result in dead-locks.

  • When using syslog-ng to read messages from the /proc/kmsg file, syslog-ng automatically disables the follow-freq() parameter to avoid blocking the file.

  • To read the kernel messages on HP-UX platforms, use the following options in the source statement:

    file("/dev/klog"
        program-override("kernel")
        flags(kernel)
        follow-freq(0)
    );
Related Documents

The document was helpful.

Seleziona valutazione

I easily found the information I needed.

Seleziona valutazione