Chat now with support
Chat with Support

syslog-ng Premium Edition 7.0.32 - Administration Guide

Preface Introduction to syslog-ng The concepts of syslog-ng Installing syslog-ng PE The syslog-ng PE quick-start guide The syslog-ng PE configuration file Collecting log messages — sources and source drivers
How sources work default-network-drivers: Receive and parse common syslog messages internal: Collecting internal messages file: Collecting messages from text files google-pubsub: collecting messages from the Google Pub/Sub messaging service wildcard-file: Collecting messages from multiple text files linux-audit: Collecting messages from Linux audit logs mssql, oracle, sql: collecting messages from an SQL database network: Collecting messages using the RFC3164 protocol (network() driver) office365: Fetching logs from Office 365 osquery: Collect and parse osquery result logs pipe: Collecting messages from named pipes program: Receiving messages from external applications python: writing server-style Python sources python-fetcher: writing fetcher-style Python sources snmptrap: Read Net-SNMP traps syslog: Collecting messages using the IETF syslog protocol (syslog() driver) system: Collecting the system-specific log messages of a platform systemd-journal: Collecting messages from the systemd-journal system log storage systemd-syslog: Collecting systemd messages using a socket tcp, tcp6,udp, udp6: Collecting messages from remote hosts using the BSD syslog protocol udp-balancer: Receiving UDP messages at very high rate unix-stream, unix-dgram: Collecting messages from UNIX domain sockets windowsevent: Collecting Windows event logs
Sending and storing log messages — destinations and destination drivers
elasticsearch2>: Sending messages directly to Elasticsearch version 2.0 or higher (DEPRECATED) elasticsearch-http: Sending messages to Elasticsearch HTTP Event Collector file: Storing messages in plain-text files google_pubsub(): Sending logs to the Google Cloud Pub/Sub messaging service google_pubsub-managedaccount(): Sending logs to the Google Cloud Pub/Sub messaging service authenticated by Google Cloud managed service account hdfs: Storing messages on the Hadoop Distributed File System (HDFS) http: Posting messages over HTTP kafka(): Publishing messages to Apache Kafka (Java implementation) (DEPRECATED) kafka-c(): Publishing messages to Apache Kafka using the librdkafka client (C implementation) logstore: Storing messages in encrypted files mongodb: Storing messages in a MongoDB database network: Sending messages to a remote log server using the RFC3164 protocol (network() driver) pipe: Sending messages to named pipes program: Sending messages to external applications python: writing custom Python destinations sentinel(): Sending logs to the Microsoft Azure Sentinel cloud snmp: Sending SNMP traps smtp: Generating SMTP messages (email) from logs splunk-hec: Sending messages to Splunk HTTP Event Collector sql(): Storing messages in an SQL database stackdriver: Sending logs to the Google Stackdriver cloud syslog: Sending messages to a remote logserver using the IETF-syslog protocol syslog-ng(): Forward logs to another syslog-ng node tcp, tcp6, udp, udp6: Sending messages to a remote log server using the legacy BSD-syslog protocol (tcp(), udp() drivers) unix-stream, unix-dgram: Sending messages to UNIX domain sockets usertty: Sending messages to a user terminal — usertty() destination Client-side failover
Routing messages: log paths, flags, and filters Global options of syslog-ng PE TLS-encrypted message transfer Advanced Log Transport Protocol Reliability and minimizing the loss of log messages Manipulating messages parser: Parse and segment structured messages Processing message content with a pattern database Correlating log messages Enriching log messages with external data Monitoring statistics and metrics of syslog-ng Multithreading and scaling in syslog-ng PE Troubleshooting syslog-ng Best practices and examples The syslog-ng manual pages Glossary

Conditional actions

To limit when a message is triggered, use the condition attribute and specify a filter expression: the action will be executed only if the condition is met. For example, the following action is executed only if the message was sent by the host called myhost.

<action condition="'${HOST}' == 'myhost'">

You can use the same operators in the condition that can be used in filters. For details, see Comparing macro values in filters.

The following action can be used to log the length of an SSH session (the time difference between a login and a logout message in the context):

<actions>
    <action>
        <message>
            <values>
                <value name="MESSAGE">An SSH session for ${SSH_USERNAME}@1 from ${SSH_CLIENT_ADDRESS}@2 closed. Session lasted from ${DATE}@2 ${DATE} </value>
            </values>
        </message>
    </action>
</actions>
Example: Actions based on the number of messages

The following example triggers different actions based on the number of messages in the context. This way you can check if the context contains enough messages for the event to be complete, and execute a different action if it does not.

<actions>
    <action condition='"$(context-length)" >= "4"'>
        <message>
            <values>
                <value name="PROGRAM">event</value>
                <value name="MESSAGE">Event complete</value>
            </values>
        </message>
    </action>
    <action condition='"$(context-length)" < "4"'>
        <message>
            <values>
                <value name="PROGRAM">error</value>
            <value name="MESSAGE">Error detected</value>
            </values>
        </message>
    </action>
</actions>

External actions

To perform an external action when a message is triggered, for example, to send the message in an email, you have to route the generated messages to an external application using the program() destination.

Example: Sending triggered messages to external applications

The following sample configuration selects the triggered messages and sends them to an external script.

  1. Set a field in the triggered message that is easy to identify and filter. For example:

    <values>
        <value name="MESSAGE">A log message from ${HOST} matched rule number $.classifier.rule_id</value>
        <value name="TRIGGER">yes</value>
    </values>
  2. Create a destination that will process the triggered messages.

    destination d_triggers { program("/bin/myscript"; ); };
  3. Create a filter that selects the triggered messages from the internal source.

    filter f_triggers {match("yes" value ("TRIGGER") type(string));};
  4. Create a logpath that selects the triggered messages from the internal source and sends them to the script:

    log { source(s_local); filter(f_triggers); destination(d_triggers); };
  5. Create a script that will actually process the generated messages, for example:

    #!/usr/bin/perl
    while (<>) {
            # body of the script to send emails, snmp traps, and so on
    }

Actions and message correlation

Certain features of generating messages can be used only if message correlation is used as well. For details on correlating messages, see Correlating log messages using pattern databases.

  • The syslog-ng PE application automatically fills the fields for the generated message based on the scope of the context, for example, the HOST and PROGRAM fields if the context-scope is program.

  • When used together with message correlation, you can also refer to fields and values of earlier messages of the context by adding the @<distance-of-referenced-message-from-the-current> suffix to the macro. For details, see Referencing earlier messages of the context.

    Example: Referencing values from an earlier message

    The following action can be used to log the length of an SSH session (the time difference between a login and a logout message in the context):

    <actions>
        <action>
            <message>
                <values>
                    <value name="MESSAGE">An SSH session for ${SSH_USERNAME}@1 from ${SSH_CLIENT_ADDRESS}@2 closed. Session lasted from ${DATE}@2 to ${DATE} </value>
                </values>
            </message>
        </action>
    </actions>
  • You can use the name-value pairs of other messages of the context. If you set the inherit-properties attribute of the generated message to context, syslog-ng PE collects every name-value pair from each message stored in the context, and includes them in the generated message. This means that you can refer to a name-value pair without having to know which message of the context included it. If a name-value pair appears in multiple messages of the context, the value in the latest message will be used. To refer to an earlier value, use the @<distance-of-referenced-message-from-the-current> suffix format.

    <action>
        <message inherit-properties='context'>
    Example: Using the inherit-properties option

    For example, if inherit-properties is set to context, and you have a rule that collects SSH login and logout messages to the same context, you can use the following value to generate a message collecting the most important information form both messages, including the beginning and end date.

    <value name="MESSAGE">An SSH session for ${SSH_USERNAME} from ${SSH_CLIENT_ADDRESS} closed. Session lasted from ${DATE}@2 to $DATE pid: $PID.</value>

    The following is a detailed rule for this purpose.

    <patterndb version='4' pub_date='2015-04-13'>
        <ruleset name='sshd' id='12345678'>
            <pattern>sshd</pattern>
                <rules>
                    <!-- The pattern database rule for the first log message -->
                    <rule provider='me' id='12347598' class='system'
                        context-id="ssh-login-logout" context-timeout="86400"
                        context-scope="process">
                    <!-- Note the context-id that groups together the
                    relevant messages, and the context-timeout value that
                    determines how long a new message can be added to the
                    context  -->
                        <patterns>
                            <pattern>Accepted @ESTRING:SSH.AUTH_METHOD: @for @ESTRING:SSH_USERNAME: @from @ESTRING:SSH_CLIENT_ADDRESS: @port @ESTRING:: @@ANYSTRING:SSH_SERVICE@</pattern>
                            <!-- This is the actual pattern used to identify
                            the log message. The segments between the @
                            characters are parsers that recognize the variable
                            parts of the message - they can also be used as
                            macros.  -->
                        </patterns>
                    </rule>
                    <!-- The pattern database rule for the fourth log message -->
                    <rule provider='me' id='12347599' class='system' context-id="ssh-login-logout" context-scope="process">
                        <patterns>
                             <pattern>pam_unix(sshd:session): session closed for user @ANYSTRING:SSH_USERNAME@</pattern>
                        </patterns>
                        <actions>
                            <action>
                                <message inherit-properties='context'>
                                    <values>
                                        <value name="MESSAGE">An SSH session for ${SSH_USERNAME} from ${SSH_CLIENT_ADDRESS} closed. Session lasted from ${DATE}@2 to $DATE pid: $PID.</value>
                                        <value name="TRIGGER">yes</value>
                                        <!-- This is the new log message
                                        that is generated when the logout
                                        message is received. The macros ending
                                        with @2 reference values of the
                                        previous message from the context. -->
                                    </values>
                                </message>
                            </action>
                        </actions>
                    </rule>
                </rules>
        </ruleset>
    </patterndb>
  • It is possible to generate a message when the context-timeout of the original message expires and no new message is added to the context during this time. To accomplish this, include the trigger="timeout" attribute in the action element:

    <action trigger="timeout">
    Example: Sending alert when a client disappears

    The following example shows how to combine various features of syslog-ng PE to send an email alert if a client stops sending messages.

    • Configure your clients to send MARK messages periodically. It is enough to configure MARK messages for the destination that forwards your log messages to your syslog-ng PE server (mark-mode(periodical)).

    • On your syslog-ng PE server, create a pattern database rule that matches on the incoming MARK messages. In the rule, set the context-scope attribute to host, and the context-timeout attribute to a value that is higher than the mark-freq value set on your clients (by default, mark-freq is 1200 seconds, so set context-timeout at least to 1500 seconds, but you might want to use a higher value, depending on your environment).

    • Add an action to this rule that sends you an email alert if the context-timeout expires, and the server does not receive a new MARK message (<action trigger="timeout">).

    • On your syslog-ng PE server, use the pattern database in the log path that handles incoming log messages.

Creating pattern databases

Related Documents

The document was helpful.

Select Rating

I easily found the information I needed.

Select Rating