サポートと今すぐチャット
サポートとのチャット

syslog-ng Open Source Edition 3.38 - Administration Guide

Preface Introduction to syslog-ng The concepts of syslog-ng Installing syslog-ng The syslog-ng OSE quick-start guide The syslog-ng OSE configuration file source: Read, receive, and collect log messages
How sources work default-network-drivers: Receive and parse common syslog messages internal: Collecting internal messages file: Collecting messages from text files wildcard-file: Collecting messages from multiple text files kubernetes: Collecting and parsing the Kubernetes CRI (Container Runtime Interface) format linux-audit: Collecting messages from Linux audit logs mqtt: receiving messages from an MQTT broker network: Collecting messages using the RFC3164 protocol (network() driver) nodejs: Receiving JSON messages from nodejs applications mbox: Converting local email messages to log messages osquery: Collect and parse osquery result logs pipe: Collecting messages from named pipes pacct: Collecting process accounting logs on Linux program: Receiving messages from external applications python: writing server-style Python sources python-fetcher: writing fetcher-style Python sources snmptrap: Read Net-SNMP traps sun-streams: Collecting messages on Sun Solaris syslog: Collecting messages using the IETF syslog protocol (syslog() driver) system: Collecting the system-specific log messages of a platform systemd-journal: Collecting messages from the systemd-journal system log storage systemd-syslog: Collecting systemd messages using a socket tcp, tcp6, udp, udp6: Collecting messages from remote hosts using the BSD syslog protocol— OBSOLETE unix-stream, unix-dgram: Collecting messages from UNIX domain sockets stdin: Collecting messages from the standard input stream
destination: Forward, send, and store log messages
amqp: Publishing messages using AMQP collectd: sending metrics to collectd discord: Sending alerts and notifications to Discord elasticsearch2: Sending messages directly to Elasticsearch version 2.0 or higher (DEPRECATED) elasticsearch-http: Sending messages to Elasticsearch HTTP Bulk API file: Storing messages in plain-text files graphite: Sending metrics to Graphite Sending logs to Graylog hdfs: Storing messages on the Hadoop Distributed File System (HDFS) Posting messages over HTTP http: Posting messages over HTTP without Java kafka: Publishing messages to Apache Kafka (Java implementation) kafka-c(): Publishing messages to Apache Kafka using the librdkafka client (C implementation) loggly: Using Loggly logmatic: Using Logmatic.io mongodb(): Storing messages in a MongoDB database mqtt() destination: sending messages from a local network to an MQTT broker network: Sending messages to a remote log server using the RFC3164 protocol (network() driver) osquery: Sending log messages to osquery's syslog table pipe: Sending messages to named pipes program: Sending messages to external applications pseudofile() python: writing custom Python destinations redis: Storing name-value pairs in Redis riemann: Monitoring your data with Riemann slack: Sending alerts and notifications to a Slack channel smtp: Generating SMTP messages (email) from logs snmp: Sending SNMP traps Splunk: Sending log messages to Splunk sql: Storing messages in an SQL database stomp: Publishing messages using STOMP Sumo Logic destinations: sumologic-http() and sumologic-syslog() syslog: Sending messages to a remote logserver using the IETF-syslog protocol syslog-ng(): Forward logs to another syslog-ng node tcp, tcp6, udp, udp6: Sending messages to a remote log server using the legacy BSD-syslog protocol (tcp(), udp() drivers) Telegram: Sending messages to Telegram unix-stream, unix-dgram: Sending messages to UNIX domain sockets usertty: Sending messages to a user terminal: usertty() destination Write your own custom destination in Java or Python Client-side failover
log: Filter and route log messages using log paths, flags, and filters Global options of syslog-ng OSE TLS-encrypted message transfer template and rewrite: Format, modify, and manipulate log messages parser: Parse and segment structured messages
Parsing syslog messages Parsing messages with comma-separated and similar values Parsing key=value pairs JSON parser XML parser Parsing dates and timestamps Python parser Parsing tags Apache access log parser Linux audit parser Cisco parser Parsing enterprise-wide message model (EWMM) messages iptables parser Netskope parser panos-parser(): parsing PAN-OS log messages Sudo parser MariaDB parser Websense parser Fortigate parser Check Point Log Exporter parser Regular expression (regexp) parser db-parser: Process message content with a pattern database (patterndb)
Correlating log messages Enriching log messages with external data Statistics of syslog-ng Multithreading and scaling in syslog-ng OSE Troubleshooting syslog-ng Best practices and examples The syslog-ng manual pages Creative Commons Attribution Non-commercial No Derivatives (by-nc-nd) License The syslog-ng Open Source Edition Documentation License Glossary

stdin() source options

The stdin() driver has the following options:

default-facility()
Type: facility string
Default: kern

Description: This parameter assigns a facility value to the messages received from the file source if the message does not specify one.

default-priority()
Type: priority string
Default:

Description: This parameter assigns an emergency level to the messages received from the file source if the message does not specify one. For example, default-priority(warning).

encoding()
Type: string
Default:

Description: Specifies the character set (encoding, for example, UTF-8) of messages using the legacy BSD-syslog protocol. To list the available character sets on a host, execute the iconv -l command. For details on how encoding affects the size of the message, see Message size and encoding.

flags()
Type: assume-utf8, empty-lines, expect-hostname, kernel, no-hostname, no-multi-line, no-parse, sanitize-utf8, store-legacy-msghdr, store-raw-message, syslog-protocol, validate-utf8
Default: empty set

Description: Specifies the log parsing options of the source.

  • assume-utf8: The assume-utf8 flag assumes that the incoming messages are UTF-8 encoded, but does not verify the encoding. If you explicitly want to validate the UTF-8 encoding of the incoming message, use the validate-utf8 flag.

  • empty-lines: Use the empty-lines flag to keep the empty lines of the messages. By default, syslog-ng OSE removes empty lines automatically.

  • expect-hostname: If the expect-hostname flag is enabled, syslog-ng OSE will assume that the log message contains a hostname and parse the message accordingly. This is the default behavior for TCP sources. Note that pipe sources use the no-hostname flag by default.

  • guess-timezone: Attempt to guess the timezone of the message if this information is not available in the message. Works when the incoming message stream is close to real time, and the timezone information is missing from the timestamp.

  • kernel: The kernel flag makes the source default to the LOG_KERN | LOG_NOTICE priority if not specified otherwise.

  • no-header: The no-header flag triggers syslog-ng OSE to parse only the PRI field of incoming messages, and put the rest of the message contents into $MSG.

    Its functionality is similar to that of the no-parse flag, except the no-header flag does not skip the PRI field.

    NOTE: Essentially, the no-header flag signals syslog-ng OSE that the syslog header is not present (or does not adhere to the conventions / RFCs), so the entire message (except from the PRI field) is put into $MSG.

    Example: using the no-header flag with the syslog-parser() parser

    The following example illustrates using the no-header flag with the syslog-parser() parser:

    parser p_syslog {
      syslog-parser(
        flags(no-header)
      );
    };
  • no-hostname: Enable the no-hostname flag if the log message does not include the hostname of the sender host. That way syslog-ng OSE assumes that the first part of the message header is ${PROGRAM} instead of ${HOST}. For example:

    source s_dell {
        network(
            port(2000)
            flags(no-hostname)
        );
    };
  • no-multi-line: The no-multi-line flag disables line-breaking in the messages: the entire message is converted to a single line. Note that this happens only if the underlying transport method actually supports multi-line messages. Currently the file() and pipe() drivers support multi-line messages.

  • no-parse: By default, syslog-ng OSE parses incoming messages as syslog messages. The no-parse flag completely disables syslog message parsing and processes the complete line as the message part of a syslog message. The syslog-ng OSE application will generate a new syslog header (timestamp, host, and so on) automatically and put the entire incoming message into the MESSAGE part of the syslog message (available using the ${MESSAGE} macro). This flag is useful for parsing messages not complying to the syslog format.

    If you are using the flags(no-parse) option, then syslog message parsing is completely disabled, and the entire incoming message is treated as the ${MESSAGE} part of a syslog message. In this case, syslog-ng OSE generates a new syslog header (timestamp, host, and so on) automatically. Note that even though flags(no-parse) disables message parsing, some flags can still be used, for example, the no-multi-line flag.

  • dont-store-legacy-msghdr: By default, syslog-ng stores the original incoming header of the log message. This is useful if the original format of a non-syslog-compliant message must be retained (syslog-ng automatically corrects minor header errors, for example, adds a whitespace before msg in the following message: Jan 22 10:06:11 host program:msg). If you do not want to store the original header of the message, enable the dont-store-legacy-msghdr flag.

  • sanitize-utf8: When using the sanitize-utf8 flag, syslog-ng OSE converts non-UTF-8 input to an escaped form, which is valid UTF-8.

  • store-raw-message: Save the original message as received from the client in the ${RAWMSG} macro. You can forward this raw message in its original form to another syslog-ng node using the syslog-ng() destination, or to a SIEM system, ensuring that the SIEM can process it. Available only in 3.16 and later.

  • syslog-protocol: The syslog-protocol flag specifies that incoming messages are expected to be formatted according to the new IETF syslog protocol standard (RFC5424), but without the frame header. Note that this flag is not needed for the syslog driver, which handles only messages that have a frame header.

  • validate-utf8: The validate-utf8 flag enables encoding-verification for messages formatted according to the new IETF syslog standard (for details, see IETF-syslog messages). If the BOM1 character is missing, but the message is otherwise UTF-8 compliant, syslog-ng automatically adds the BOM character to the message.

follow-freq()
Type: number
Default: 1

Description: Indicates that the source should be checked periodically. This is useful for files which always indicate readability, even though no new lines were appended. If this value is higher than zero, syslog-ng will not attempt to use poll() on the file, but checks whether the file changed every time the follow-freq() interval (in seconds) has elapsed. Floating-point numbers (for example, 1.5.

hook-commands()

Description: This option makes it possible to execute external programs when the relevant driver is initialized or torn down. The hook-commands() can be used with all source and destination drivers with the exception of the usertty() and internal() drivers.

NOTE: The syslog-ng OSE application must be able to start and restart the external program, and have the necessary permissions to do so. For example, if your host is running AppArmor or SELinux, you might have to modify your AppArmor or SELinux configuration to enable syslog-ng OSE to execute external applications.

Using the hook-commands() when syslog-ng OSE starts or stops

To execute an external program when syslog-ng OSE starts or stops, use the following options:

startup()
Type: string
Default: N/A

Description: Defines the external program that is executed as syslog-ng OSE starts.

shutdown()
Type: string
Default: N/A

Description: Defines the external program that is executed as syslog-ng OSE stops.

Using the hook-commands() when syslog-ng OSE reloads

To execute an external program when the syslog-ng OSE configuration is initiated or torn down, for example, on startup/shutdown or during a syslog-ng OSE reload, use the following options:

setup()
Type: string
Default: N/A

Description: Defines an external program that is executed when the syslog-ng OSE configuration is initiated, for example, on startup or during a syslog-ng OSE reload.

teardown()
Type: string
Default: N/A

Description: Defines an external program that is executed when the syslog-ng OSE configuration is stopped or torn down, for example, on shutdown or during a syslog-ng OSE reload.

Example: Using the hook-commands() with a network source

In the following example, the hook-commands() is used with the network() driver and it opens an iptables port automatically as syslog-ng OSE is started/stopped.

The assumption in this example is that the LOGCHAIN chain is part of a larger ruleset that routes traffic to it. Whenever the syslog-ng OSE created rule is there, packets can flow, otherwise the port is closed.

source {
   network(transport(udp)
	hook-commands(
          startup("iptables -I LOGCHAIN 1 -p udp --dport 514 -j ACCEPT")
          shutdown("iptables -D LOGCHAIN 1")
        )
     );
};
keep-timestamp()
Type: yes or no
Default: yes

Description: Specifies whether syslog-ng should accept the timestamp received from the sending application or client. If disabled, the time of reception will be used instead. This option can be specified globally, and per-source as well. The local setting of the source overrides the global option if available.

Caution:

To use the S_ macros, the keep-timestamp() option must be enabled (this is the default behavior of syslog-ng OSE).

log-fetch-limit()
Type: number
Default: 100

Description: The maximum number of messages fetched from a source during a single poll loop. The destination queues might fill up before flow-control could stop reading if log-fetch-limit() is too high.

log-iw-size()
Type: number
Default: 10000

Description: The size of the initial window, this value is used during flow control. Make sure that log-iw-size() is larger than the value of log-fetch-limit().

log-msg-size()
Type: number (bytes)
Default: Use the global log-msg-size() option, which defaults to 65536 (64 KiB).

Description: Maximum length of an incoming message in bytes. This length includes the entire message (the data structure and individual fields). The maximal value that can be set is 268435456 bytes (256 MiB).

For messages using the IETF-syslog message format (RFC5424), the maximal size of the value of an SDATA field is 64 KiB.

NOTE: In most cases, log-msg-size() does not need to be set higher than 10 MiB.

For details on how encoding affects the size of the message, see Message size and encoding.

You can use human-readable units when setting configuration options. For details, seeNotes about the configuration syntax.

Uses the value of the global option if not specified.

log-prefix() (DEPRECATED)
Type: string
Default:

Description: A string added to the beginning of every log message. It can be used to add an arbitrary string to any log source, though it is most commonly used for adding kernel: to the kernel messages on Linux.

NOTE: This option is deprecated. Use program-override instead.

multi-line-garbage()
Type: regular expression
Default: empty string

Description: Use the multi-line-garbage() option when processing multi-line messages that contain unneeded parts between the messages. Specify a string or regular expression that matches the beginning of the unneeded message parts. If the multi-line-garbage() option is set, syslog-ng OSE ignores the lines between the line matching the multi-line-garbage() and the next line matching multi-line-prefix(). See also the multi-line-prefix() option.

When receiving multi-line messages from a source when the multi-line-garbage() option is set, but no matching line is received between two lines that match multi-line-prefix(), syslog-ng OSE will continue to process the incoming lines as a single message until a line matching multi-line-garbage() is received.

To use the multi-line-garbage() option, set the multi-line-mode() option to prefix-garbage.

Caution:

If the multi-line-garbage() option is set, syslog-ng OSE discards lines between the line matching the multi-line-garbage() and the next line matching multi-line-prefix().

multi-line-mode()
Type: indented|regexp
Default: empty string

Description: Use the multi-line-mode() option when processing multi-line messages. The syslog-ng OSE application provides the following methods to process multi-line messages:

  • The indented mode can process messages where each line that belongs to the previous line is indented by whitespace, and the message continues until the first non-indented line. For example, the Linux kernel (starting with version 3.5) uses this format for /dev/log, as well as several applications, like Apache Tomcat.

    Example: Processing indented multi-line messages
    source s_tomcat {
        file("/var/log/tomcat/xxx.log" multi-line-mode(indented));
    };
  • The prefix-garbage mode uses a string or regular expression (set in multi-line-prefix()) that matches the beginning of the log messages, ignores newline characters from the source until a line matches the regular expression again, and treats the lines between the matching lines as a single message. For details on using multi-line-mode(prefix-garbage), see the multi-line-prefix() and multi-line-garbage() options.

  • The prefix-suffix mode uses a string or regular expression (set in multi-line-prefix()) that matches the beginning of the log messages, ignores newline characters from the source until a line matches the regular expression set in multi-line-suffix(), and treats the lines between multi-line-prefix() and multi-line-suffix() as a single message. Any other lines between the end of the message and the beginning of a new message (that is, a line that matches the multi-line-prefix() expression) are discarded. For details on using multi-line-mode(prefix-suffix), see the multi-line-prefix() and multi-line-suffix() options.

    The prefix-suffix mode is similar to the prefix-garbage mode, but it appends the garbage part to the message instead of discarding it.

TIP: To format multi-line messages to your individual needs, consider the following:

  • To make multi-line messages more readable when written to a file, use a template in the destination and instead of the ${MESSAGE} macro, use the following: $(indent-multi-line ${MESSAGE}). This expression inserts a tab after every newline character (except when a tab is already present), indenting every line of the message after the first. For example:

    destination d_file {
        file ("/var/log/messages"
            template("${ISODATE} ${HOST} $(indent-multi-line ${MESSAGE})\n")
        );
    };

    For details on using templates, see Templates and macros.

  • To actually convert the lines of multi-line messages to single line (by replacing the newline characters with whitespaces), use the flags(no-multi-line) option in the source.

multi-line-prefix()
Type: regular expression starting with the ^ character
Default: empty string

Description: Use the multi-line-prefix() option to process multi-line messages, that is, log messages that contain newline characters (for example, Tomcat logs). Specify a string or regular expression that matches the beginning of the log messages (always start with the ^ character). Use as simple regular expressions as possible, because complex regular expressions can severely reduce the rate of processing multi-line messages. If the multi-line-prefix() option is set, syslog-ng OSE ignores newline characters from the source until a line matches the regular expression again, and treats the lines between the matching lines as a single message. See also the multi-line-garbage() option.

TIP: To format multi-line messages to your individual needs, consider the following:

  • To make multi-line messages more readable when written to a file, use a template in the destination and instead of the ${MESSAGE} macro, use the following: $(indent-multi-line ${MESSAGE}). This expression inserts a tab after every newline character (except when a tab is already present), indenting every line of the message after the first. For example:

    destination d_file {
        file ("/var/log/messages"
            template("${ISODATE} ${HOST} $(indent-multi-line ${MESSAGE})\n")
        );
    };

    For details on using templates, see Templates and macros.

  • To actually convert the lines of multi-line messages to single line (by replacing the newline characters with whitespaces), use the flags(no-multi-line) option in the source.

Example: Processing Tomcat logs

The log messages of the Apache Tomcat server are a typical example for multi-line log messages. The messages start with the date and time of the query in the YYYY.MM.DD HH:MM:SS format, as you can see in the following example.

2010.06.09. 12:07:39 org.apache.catalina.startup.Catalina start
SEVERE: Catalina.start:
LifecycleException:  service.getName(): "Catalina";  Protocol handler start failed: java.net.BindException: Address already in use null:8080
       at org.apache.catalina.connector.Connector.start(Connector.java:1138)
       at org.apache.catalina.core.StandardService.start(StandardService.java:531)
       at org.apache.catalina.core.StandardServer.start(StandardServer.java:710)
       at org.apache.catalina.startup.Catalina.start(Catalina.java:583)
       at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
       at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
       at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
       at java.lang.reflect.Method.invoke(Method.java:597)
       at org.apache.catalina.startup.Bootstrap.start(Bootstrap.java:288)
       at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
       at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
       at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
       at java.lang.reflect.Method.invoke(Method.java:597)
       at org.apache.commons.daemon.support.DaemonLoader.start(DaemonLoader.java:177)
2010.06.09. 12:07:39 org.apache.catalina.startup.Catalina start
INFO: Server startup in 1206 ms
2010.06.09. 12:45:08 org.apache.coyote.http11.Http11Protocol pause
INFO: Pausing Coyote HTTP/1.1 on http-8080
2010.06.09. 12:45:09 org.apache.catalina.core.StandardService stop
INFO: Stopping service Catalina

To process these messages, specify a regular expression matching the timestamp of the messages in the multi-line-prefix() option. Such an expression is the following:

source s_file{file("/var/log/tomcat6/catalina.2010-06-09.log" follow-freq(0) multi-line-mode(regexp) multi-line-prefix("[0-9]{4}\.[0-9]{2}\.[0-9]{2}\.") flags(no-parse));};
};

Note that flags(no-parse) is needed to prevent syslog-ng OSE trying to interpret the date in the message.

multi-line-suffix()
Type: regular expression
Default: empty string

Description: Use the multi-line-suffix() option when processing multi-line messages. Specify a string or regular expression that matches the end of the multi-line message.

To use the multi-line-suffix() option, set the multi-line-mode() option to prefix-suffix. See also the multi-line-prefix() option.

pad-size()
Type: number
Default: 0

Description: Specifies input padding. Some operating systems (such as HP-UX) pad all messages to block boundary. This option can be used to specify the block size. The syslog-ng OSE application will pad reads from the associated device to the number of bytes set in pad-size(). Mostly used on HP-UX where /dev/log is a named pipe and every write is padded to 2048 bytes. If pad-size() was given and the incoming message does not fit into pad-size(), syslog-ng will not read anymore from this pipe and displays the following error message:

Padding was set, and couldn't read enough bytes
program-override()
Type: string
Default:

Description: Replaces the ${PROGRAM} part of the message with the parameter string. For example, to mark every message coming from the kernel, include the program-override("kernel") option in the source containing /proc/kmsg.

tags()
Type: string
Default:

Description: Label the messages received from the source with custom tags. Tags must be unique, and enclosed between double quotes. When adding multiple tags, separate them with comma, for example, tags("dmz", "router"). This option is available only in syslog-ng 3.1 and later.

time-zone()
Type: name of the timezone, or the timezone offset
Default:

Description: The default timezone for messages read from the source. Applies only if no timezone is specified within the message itself.

The timezone can be specified by using the name, for example, time-zone("Europe/Budapest")), or as the timezone offset in +/-HH:MM format, for example, +01:00). On Linux and UNIX platforms, the valid timezone names are listed under the /usr/share/zoneinfo directory.

destination: Forward, send, and store log messages

A destination is where a log message is sent if the filtering rules match. Similarly to sources, destinations consist of one or more drivers, each defining where and how messages are sent.

TIP: If no drivers are defined for a destination, all messages sent to the destination are discarded. This is equivalent to omitting the destination from the log statement.

To define a destination, add a destination statement to the syslog-ng configuration file using the following syntax:

destination <identifier> {
    destination-driver(params); destination-driver(params); ...
};
Example: A simple destination statement

The following destination statement sends messages to the TCP port 1999 of the 10.1.2.3 host.

destination d_demo_tcp {
    network("10.1.2.3" port(1999));
};

If name resolution is configured, you can use the hostname of the target server as well.

destination d_tcp {
    network("target_host" port(1999));
};

Caution:
  • Do not define the same drivers with the same parameters more than once, because it will cause problems. For example, do not open the same file in multiple destinations.

  • Do not use the same destination in different log paths, because it can cause problems with most destination types. Instead, use filters and log paths to avoid such situations.

  • Sources and destinations are initialized only when they are used in a log statement. For example, syslog-ng OSE starts listening on a port or starts polling a file only if the source is used in a log statement. For details on creating log statements, see log: Filter and route log messages using log paths, flags, and filters.

The following table lists the destination drivers available in syslog-ng OSE. If these destinations do not satisfy your needs, you can extend syslog-ng OSE and write your own destination, for example, in C, Java, or Python. For details, see Write your own custom destination in Java or Python.

The following destination driver groups are available in syslog-ng OSE:

Topics:

amqp: Publishing messages using AMQP

The amqp() driver publishes messages using the AMQP (Advanced Message Queuing Protocol). syslog-ng OSE supports AMQP versions 0.9.1 and 1.0. The syslog-ng OSE amqp() driver supports persistence, and every available exchange types.

The name-value pairs selected with the value-pairs() option will be sent as AMQP headers, while the body of the AMQP message is empty by default (but you can add custom content using the body() option). Publishing the name-value pairs as headers makes it possible to use the Headers exchange-type and subscribe only to interesting log streams. This solution is more flexible than using the routing-key() option.

For the list of available parameters, see amqp() destination options.

Declaration:
amqp( host("<amqp-server-address>") );
Example: Using the amqp() driver

The following example shows the default values of the available options.

destination d_amqp {
    amqp(
        vhost("/")
        host("127.0.0.1")
        port(5672)
        exchange("syslog")
        exchange-type("fanout")
        routing-key("")
        body("")
        persistent(yes)
        value-pairs(
            scope("selected-macros" "nv-pairs" "sdata")
        )
    );
};

amqp() destination options

The amqp() driver publishes messages using the AMQP (Advanced Message Queuing Protocol).

The amqp() destination has the following options:

auth-method()
Accepted values: plain | external
Default: plain

Description: The amqp() driver supports the following types of authentication:

  • plain: Authentication happens using username and password. This is the default.

  • external: Authentication happens using an out-of-band mechanism, for example, x509 certificate peer verification, client IP address range, or similar. For more information, see the RabbitMQ documentation.

batch-bytes()
Accepted values: number [bytes]
Default: none

Description: Sets the maximum size of payload in a batch. If the size of the messages reaches this value, syslog-ng OSE sends the batch to the destination even if the number of messages is less than the value of the batch-lines() option.

Note that if the batch-timeout() option is enabled and the queue becomes empty, syslog-ng OSE flushes the messages only if batch-timeout() expires, or the batch reaches the limit set in batch-bytes().

Available in syslog-ng OSE version 3.19 and later.

batch-lines()
Type: number
Default: 1

Description: Specifies how many lines are flushed to a destination in one batch. The syslog-ng OSE application waits for this number of lines to accumulate and sends them off in a single batch. Increasing this number increases throughput as more messages are sent in a single batch, but also increases message latency.

For example, if you set batch-lines() to 100, syslog-ng OSE waits for 100 messages.

If the batch-timeout() option is disabled, the syslog-ng OSE application flushes the messages if it has sent batch-lines() number of messages, or the queue became empty. If you stop or reload syslog-ng OSE or in case of network sources, the connection with the client is closed, syslog-ng OSE automatically sends the unsent messages to the destination.

Note that if the batch-timeout() option is enabled and the queue becomes empty, syslog-ng OSE flushes the messages only if batch-timeout() expires, or the batch reaches the limit set in batch-lines().

For optimal performance, make sure that the syslog-ng OSE source that feeds messages to this destination is configured properly: the value of the log-iw-size() option of the source must be higher than the batch-lines()*workers() of the destination. Otherwise, the size of the batches cannot reach the batch-lines() limit.

batch-timeout()
Type: time in milliseconds
Default: -1 (disabled)

Description: Specifies the time syslog-ng OSE waits for lines to accumulate in the output buffer. The syslog-ng OSE application sends batches to the destinations evenly. The timer starts when the first message arrives to the buffer, so if only few messages arrive, syslog-ng OSE sends messages to the destination at most once every batch-timeout() milliseconds.

body()
Type: string
Default: empty string

Description: The body of the AMQP message. You can also use macros and templates.

ca-file()
Type: string
Default: N/A

Description: Name of a file, that contains the trusted CA certificate in PEM format. For example: ca-file("/home/certs/syslog-ng/tls/cacert.pem"). The syslog-ng OSE application uses this CA certificate to validate the certificate of the peer.

An alternative way to specify this option is to put into a tls() block and specify it there, together with any other TLS options. This allows you to separate these options and ensure better readability.

Declaration:
destination  d_ampqp {
    amqp(
        host("127.0.0.1")
        port(5672)
        username("test")
        password("test")
        tls(
            ca-file("ca")
            cert-file("cert") 
            key-file("key")
            peer-verify(yes|no)
        )
    );
};

Make sure that you specify TLS options either using their own dedicated option (ca-file(), cert-file(), key-file(), and peer-verify()), or using the tls() block and inserting the relevant options within tls(). Avoid mixing the two methods. In case you do specify TLS options in both ways, the one that comes later in the configuration file will take effect.

cert-file()
Accepted values: Filename
Default: none

Description: Name of a file, that contains an X.509 certificate (or a certificate chain) in PEM format, suitable as a TLS certificate, matching the private key set in the key-file() option. The syslog-ng OSE application uses this certificate to authenticate the syslog-ng OSE client on the destination server. If the file contains a certificate chain, the file must begin with the certificate of the host, followed by the CA certificate that signed the certificate of the host, and any other signing CAs in order.

An alternative way to specify this option is to put into a tls() block and specify it there, together with any other TLS options. This allows you to separate these options and ensure better readability.

Declaration:
destination  d_ampqp {
    amqp(
        host("127.0.0.1")
        port(5672)
        username("test")
        password("test")
        tls(
            ca-file("ca")
            cert-file("cert") 
            key-file("key")
            peer-verify(yes|no)
        )
    );
};

Make sure that you specify TLS options either using their own dedicated option (ca-file(), cert-file(), key-file(), and peer-verify()), or using the tls() block and inserting the relevant options within tls(). Avoid mixing the two methods. In case you do specify TLS options in both ways, the one that comes later in the configuration file will take effect.

disk-buffer()

Description: This option enables putting outgoing messages into the disk buffer of the destination to avoid message loss in case of a system failure on the destination side. It has the following options:

reliable()
Type: yes|no
Default: no

Description: If set to yes, syslog-ng OSE cannot lose logs in case of reload/restart, unreachable destination or syslog-ng OSE crash. This solution provides a slower, but reliable disk-buffer option. It is created and initialized at startup and gradually grows as new messages arrive. If set to no, the normal disk-buffer will be used. This provides a faster, but less reliable disk-buffer option.

Caution:

Hazard of data loss! If you change the value of reliable() option when there are messages in the disk-buffer, the messages stored in the disk-buffer will be lost.

compaction()
Type: yes|no
Default: no

Description: If set to yes, syslog-ng OSE prunes the unused space in the LogMessage representation, making the disk queue size smaller at the cost of some CPU time. Setting the compaction() argument to yes is recommended when numerous name-value pairs are unset during processing, or when the same names are set multiple times.

NOTE: Simply unsetting these name-value pairs by using the unset() rewrite operation is not enough, as due to performance reasons that help when syslog-ng OSE is CPU bound, the internal representation of a LogMessage will not release the memory associated with these name-value pairs. In some cases, however, the size of this overhead becomes significant (the raw message size can grow up to four times its original size), which unnecessarily increases the disk queue file size. For these cases, the compaction will drop unset values, making the LogMessage representation smaller at the cost of some CPU time required to perform compaction.

dir()
Type: string
Default: N/A

Description: Defines the folder where the disk-buffer files are stored.

Caution:

When creating a new dir() option for a disk buffer, or modifying an existing one, make sure you delete the persist file.

syslog-ng OSE creates disk-buffer files based on the path recorded in the persist file. Therefore, if the persist file is not deleted after modifying the dir() option, then following a restart, syslog-ng OSE will look for or create disk-buffer files in their old location. To ensure that syslog-ng OSE uses the new dir() setting, the persist file must not contain any information about the destinations which the disk-buffer file in question belongs to.

NOTE: If the dir() path provided by the user does not exist, syslog-ng OSE creates the path with the same permission as the running instance.

disk-buf-size()
Type: number (bytes)
Default:

Description: This is a required option. The maximum size of the disk-buffer in bytes. The minimum value is 1048576 bytes. If you set a smaller value, the minimum value will be used automatically. It replaces the old log-disk-fifo-size() option.
mem-buf-length()
Type: number (messages)
Default: 10000
Description: Use this option if the option reliable() is set to no. This option contains the number of messages stored in overflow queue. It replaces the old log-fifo-size() option. It inherits the value of the global log-fifo-size() option if provided. If it is not provided, the default value is 10000 messages. Note that this option will be ignored if the option reliable() is set to yes.
mem-buf-size()
Type: number (bytes)
Default: 163840000
Description: Use this option if the option reliable() is set to yes. This option contains the size of the messages in bytes that is used in the memory part of the disk buffer. It replaces the old log-fifo-size() option. It does not inherit the value of the global log-fifo-size() option, even if it is provided. Note that this option will be ignored if the option reliable() is set to no.
qout-size()
Type: number (messages)
Default: 64
Description: The number of messages stored in the output buffer of the destination. Note that if you change the value of this option and the disk-buffer already exists, the change will take effect when the disk-buffer becomes empty.

Options reliable() and disk-buf-size() are required options.

Example: Examples for using disk-buffer()

In the following case reliable disk-buffer() is used.

destination d_demo {
    network(
        "127.0.0.1"
        port(3333)
        disk-buffer(
            mem-buf-size(10000)
            disk-buf-size(2000000)
            reliable(yes)
            dir("/tmp/disk-buffer")
        )
    );
};

In the following case normal disk-buffer() is used.

destination d_demo {
    network(
        "127.0.0.1"
        port(3333)
           disk-buffer(
            mem-buf-length(10000)
            disk-buf-size(2000000)
            reliable(no)
            dir("/tmp/disk-buffer")
        )
    );
};

truncate-size-ratio()

Type: number (between 0 and 1)
Default: 0.1 (10%)

Description: Limits the truncation of the disk-buffer file. Truncating the disk-buffer file can slow down the disk IO operations, but it saves disk space, so syslog-ng only truncates the file, if the possible disk gain is more than truncate-size-ratio() times disk-buf-size().

Caution:

One Identity does not recommend you to change truncate-size-ratio(). Only change its value if you know the performance implications of doing so.

exchange()
Type: string
Default: syslog

Description: The name of the AMQP exchange where syslog-ng OSE sends the message. Exchanges take a message and route it into zero or more queues.

exchange-declare()
Type: yes|no
Default: no

Description: By default, syslog-ng OSE does not create non-existing exchanges. Use the exchange-declare(yes) option to automatically create exchanges.

exchange-type()
Type: direct|fanout|topic|headers
Default: fanout

Description: The type of the AMQP exchange.

frame-size()
Type: integer
Default:

Description: Sets maximal frame size (the frame-max option described in the AMQP Reference Guide.

heartbeat()
Type: number [seconds]
Default: 0 (disabled)

Description: If enabled, the syslog-ng OSE amqp destination sends heartbeat messages to the server periodically. During negotiation, both the amqp server and the client provide a heartbeat parameter, and the smaller is chosen for heartbeat interval. For example:

destination { amqp(
    vhost("/")
    exchange("logs")
    body("hello world")
    heartbeat(10)
    username(guest) password(guest)
    );
};

Available in syslog-ng OSE version 3.21 and later.

hook-commands()

Description: This option makes it possible to execute external programs when the relevant driver is initialized or torn down. The hook-commands() can be used with all source and destination drivers with the exception of the usertty() and internal() drivers.

NOTE: The syslog-ng OSE application must be able to start and restart the external program, and have the necessary permissions to do so. For example, if your host is running AppArmor or SELinux, you might have to modify your AppArmor or SELinux configuration to enable syslog-ng OSE to execute external applications.

Using the hook-commands() when syslog-ng OSE starts or stops

To execute an external program when syslog-ng OSE starts or stops, use the following options:

startup()
Type: string
Default: N/A

Description: Defines the external program that is executed as syslog-ng OSE starts.

shutdown()
Type: string
Default: N/A

Description: Defines the external program that is executed as syslog-ng OSE stops.

Using the hook-commands() when syslog-ng OSE reloads

To execute an external program when the syslog-ng OSE configuration is initiated or torn down, for example, on startup/shutdown or during a syslog-ng OSE reload, use the following options:

setup()
Type: string
Default: N/A

Description: Defines an external program that is executed when the syslog-ng OSE configuration is initiated, for example, on startup or during a syslog-ng OSE reload.

teardown()
Type: string
Default: N/A

Description: Defines an external program that is executed when the syslog-ng OSE configuration is stopped or torn down, for example, on shutdown or during a syslog-ng OSE reload.

Example: Using the hook-commands() with a network source

In the following example, the hook-commands() is used with the network() driver and it opens an iptables port automatically as syslog-ng OSE is started/stopped.

The assumption in this example is that the LOGCHAIN chain is part of a larger ruleset that routes traffic to it. Whenever the syslog-ng OSE created rule is there, packets can flow, otherwise the port is closed.

source {
   network(transport(udp)
	hook-commands(
          startup("iptables -I LOGCHAIN 1 -p udp --dport 514 -j ACCEPT")
          shutdown("iptables -D LOGCHAIN 1")
        )
     );
};
host()
Type: hostname or IP address
Default: 127.0.0.1

Description: The hostname or IP address of the AMQP server.

key-file()
Accepted values: Filename
Default: none

Description: The name of a file that contains an unencrypted private key in PEM format, suitable as a TLS key. If properly configured, the syslog-ng OSE application uses this private key and the matching certificate (set in the cert-file() option) to authenticate the syslog-ng OSE client on the destination server.

max-channel()
Type: integer
Default:

Description: Sets maximal number of channels (the channel-max option described in the AMQP Reference Guide.

An alternative way to specify this option is to put into a tls() block and specify it there, together with any other TLS options. This allows you to separate these options and ensure better readability.

Declaration:
destination  d_ampqp {
    amqp(
        host("127.0.0.1")
        port(5672)
        username("test")
        password("test")
        tls(
            ca-file("ca")
            cert-file("cert") 
            key-file("key")
            peer-verify(yes|no)
        )
    );
};

Make sure that you specify TLS options either using their own dedicated option (ca-file(), cert-file(), key-file(), and peer-verify()), or using the tls() block and inserting the relevant options within tls(). Avoid mixing the two methods. In case you do specify TLS options in both ways, the one that comes later in the configuration file will take effect.

password()
Type: string
Default: n/a

Description: The password used to authenticate on the AMQP server.

peer-verify()
Accepted values: yes | no
Default: yes

Description: Verification method of the peer. The following table summarizes the possible options and their results depending on the certificate of the peer.

The remote peer has:
no certificate invalid certificate valid certificate
Local peer-verify() setting no (optional-untrusted) TLS-encryption TLS-encryption TLS-encryption
yes (required-trusted) rejected connection rejected connection TLS-encryption

For untrusted certificates only the existence of the certificate is checked, but it does not have to be valid — syslog-ng accepts the certificate even if it is expired, signed by an unknown CA, or its CN and the name of the machine mismatches.

Caution:

When validating a certificate, the entire certificate chain must be valid, including the CA certificate. If any certificate of the chain is invalid, syslog-ng OSE will reject the connection.

An alternative way to specify this option is to put into a tls() block and specify it there, together with any other TLS options. This allows you to separate these options and ensure better readability.

Declaration:
destination  d_ampqp {
    amqp(
        host("127.0.0.1")
        port(5672)
        username("test")
        password("test")
        tls(
            ca-file("ca")
            cert-file("cert") 
            key-file("key")
            peer-verify(yes|no)
        )
    );
};

Make sure that you specify TLS options either using their own dedicated option (ca-file(), cert-file(), key-file(), and peer-verify()), or using the tls() block and inserting the relevant options within tls(). Avoid mixing the two methods. In case you do specify TLS options in both ways, the one that comes later in the configuration file will take effect.

persistent()
Type: yes|no
Default: yes

Description: If this option is enabled, the AMQP server or broker will store the messages on its hard disk. That way, the messages will be retained if the AMQP server is restarted, if the message queue is set to be durable on the AMQP server.

port()
Type: number
Default: 5672

Description: The port number of the AMQP server.

retries()
Type: number (of attempts)
Default: 3

Description: If syslog-ng OSE cannot send a message, it will try again until the number of attempts reaches retries().

If the number of attempts reaches retries(), syslog-ng OSE will wait for time-reopen() time, then tries sending the message again.

routing-key()
Type: string
Default: empty string

Description: Specifies a routing key for the exchange. The routing key selects certain messages published to an exchange to be routed to the bound queue. In other words, the routing key acts like a filter. The routing key can include macros and templates.

time-reopen()
Accepted values: number [seconds]
Default: 60

Description: The time to wait in seconds before a dead connection is reestablished.

throttle()
Type: number
Default: 0

Description: Sets the maximum number of messages sent to the destination per second. Use this output-rate-limiting functionality only when using disk-buffer as well to avoid the risk of losing messages. Specifying 0 or a lower value sets the output limit to unlimited.

username()
Type: string
Default: empty string

Description: The username used to authenticate on the AMQP server.

value-pairs()
Type: parameter list of the value-pairs() option
Default:
scope("selected-macros" "nv-pairs")

Description: The value-pairs() option creates structured name-value pairs from the data and metadata of the log message. For details on using value-pairs(), see Structuring macros, metadata, and other value-pairs.

NOTE: Empty keys are not logged.

vhost()
Type: string
Default: /

Description: The name of the AMQP virtual host to send the messages to.

関連ドキュメント

The document was helpful.

評価を選択

I easily found the information I needed.

評価を選択